检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
[worker-0] [耗时: 秒] 训练输入(参数名称:)下载失败,失败原因: [worker-0] 正在安装Python依赖包,导入文件: [worker-0] [耗时: 秒] Python依赖包安装完成,导入文件: [worker-0] 训练作业开始运行 [worker-0] 训练作业运行结束,退出码
# 构建镜像 └── qwen-vl_install.sh # 安装模型运行环境 └── qwen-vl.patch # 使用git apply修改模型相关代码
# 构建镜像 └── qwen-vl_install.sh # 安装模型运行环境 └── qwen-vl.patch # 使用git apply修改模型相关代码
Integer 资源规格的弹性资源量。物理池中该值和count必须一致。 extendParams 否 extendParams object 自定义配置参数。 表9 extendParams 参数 是否必选 参数类型 描述 dockerBaseSize 否 String 指定资源池节点的容器引擎空间大小。
训练作业:用户在运行训练作业时,可以查看多个计算节点的CPU、GPU、NPU资源使用情况。具体请参见训练资源监控章节。 在线服务:用户将模型部署为在线服务后,可以通过监控功能查看CPU、内存、GPU等资源使用统计信息和模型调用次数统计,具体参见查看服务详情章节。 父主题: ModelArts
用户AK-SK认证模式 本模式支持OBS管理、训练管理、模型管理、服务管理模块的鉴权。 示例代码 1 2 from modelarts.session import Session session = Session(access_key='***',secret_key='***'
e") print(predictor_object_list) 参数说明 查询服务列表,返回list,list大小等于当前用户所有已经部署的服务个数,list中每个元素都是Predictor对象,对象属性同本章初始化服务。 查询服务列表返回说明:service_list_resp
JOBSTAT_SUBMIT_MODEL_FAILED,提交模型失败。 17 JOBSTAT_DEPLOY_SERVICE_FAILED,部署服务失败。 18 JOBSTAT_CHECK_INIT,审核作业初始化。 19 JOBSTAT_CHECK_RUNNING,审核作业正在运行中。
1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911) Hunyuan-DiT基于DevServer部署适配PyTorch NPU推理指导(6.3.909) SD3.5基于Lite Server适配PyTorch NPU的推理指导(6.3.912)
设置某一作业类型后,即可在此专属资源池中下发此种类型的作业,没有设置的作业类型不能下发。 为了支持不同的作业类型,后台需要在专属资源池上进行不同的初始化操作,例如安装插件、设置网络环境等。其中部分操作需要占据资源池的资源,导致用户实际可用资源减少。因此建议用户按需设置,避免不必要的资源浪费。 约束限制 专属资源池状态处于“运行中”。
在“删除资源池”页面,需在文本框中输入“DELETE”,单击“确定”,删除资源池。 可切换“训练作业”、“推理服务”、“开发环境”页签查看资源池上创建的训练作业、部署的推理服务、创建的Notebook实例。 图1 删除资源池 释放游离节点 如果您的资源中存在游离节点(即没有被纳管到资源池中的节点),您可在“AI专属资源池
解决方法:降低transformers版本到4.42:pip install transformers==4.42 --upgrade 问题6:部署在线服务报错starting container process caused "exec: \"/home/mind/model/run_vllm
当不需要该工作空间时,可以调用删除工作空间接口删除工作空间。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 操作步骤 调用认证鉴权接口获取用户的Token。 请求消息体: URI格式:POST
/projects,其中{iam-endpoint}为IAM的终端节点,可以从地区和终端节点处获取。 响应示例如下,例如ModelArts部署的区域为"cn-north-4",响应消息体中查找“name”为"cn-north-4",其中projects下的“id”即为项目ID。 {
deepseek-v2-236B deepseek-coder-v2-lite-16B Ascend-vllm支持如下推理特性: 支持分离部署 支持多机推理 支持大小模型投机推理及eagle投机推理 支持chunked prefill特性 支持automatic prefix caching
mistral-7b 说明: 当前版本不支持推理量化功能(W4A16,W8A8) 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:AscendCloud-3rdAIGC SDXL模型: Fine-tuning微调支持Standard及DevServer模式
可视化作业的日志存储路径。 job_id Long 可视化作业的ID。 resource_id String 可视化作业的计费资源ID。 请求示例 如下以查询正在部署中的作业,按递增排序,显示第1页前10个可视化作业为例。 GET https://endpoint/v1/{project_id}/visualization-jobs
Baichuan3-13B(PyTorch)基于DevServer训练指导 推理参考文档: 主流开源大模型(PyTorch)基于DevServer推理部署 AIGC,包名:ascendcloud-aigc Controlnet插件支持NPU推理(适配ComfyUI) Open-Clip模型昇腾适配
completed 图3 服务端响应200 图4 仍返回报错Response payload is not completed 解决方法: 安装brotlipy后返回正确报错 pip install brotlipy 问题10:使用benchmark-tools访问推理客户端返回报错或警告
指导文档 DeepSeek R1 推理 MindIE DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导 DeepSeek V3 推理 MindIE LLM大语言模型 ModelArts针对以下主流的LLM大模型进行了基于昇腾NPU的适配