检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
问题。智能家居系统收集了大量关于用户生活习惯的数据,这些数据一旦泄露,可能会对用户的隐私造成严重威胁。因此,确保数据的安全存储和传输至关重要。现代的智能家居解决方案通常采用加密技术来保护用户数据,同时,AI助手的设计也应遵循最小化数据收集原则,仅收集实现功能所必需的信息,最大限度地保障用户隐私。
登录ModelArts Studio大模型开发平台,单击页面右上角“订购管理”。 在“订购管理”页面,单击“资源订购”页签。 在“资源订购”页签可进行数据资源、训练资源、推理资源的续费操作。 父主题: 计费FAQ
为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployments/{deployment_id}/caltokens
功能总览 全部 数据工程工具链 模型开发工具链 应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据流通和管理等功能。
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
Array of ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 参数类型 描述 bucket String 输入数据的OBS桶名称。 path String 初始场数据的存放路径。 表5 TaskOutputDto 参数 参数类型
体的json字段中提取出所需的数据。 评测配置 评测类型 选择“自动评测”。 评测规则 选择“基于规则”。 评测数据集 评测模板:使用预置的专业数据集进行评测。 单个评测集:由用户指定评测指标(F1分数、准去率、BLEU、Rouge)并上传评测数据集进行评测。 选择“单个评测集”时需要上传待评测数据集。
在左侧导航栏中选择“模型开发 > 模型训练”,可进行如下操作: 编辑。单击操作列的“编辑”,可以修改模型的checkpoints、训练参数、训练数据以及基本信息等。 克隆。单击操作列的“更多 > 克隆”,参照创建NLP大模型训练任务填写参数,可以复制当前训练任务。 停止。单击操作列的“更多
在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作: 编辑。单击操作列的“编辑”,可以修改模型的训练参数、训练数据以及基本信息等。 克隆。单击操作列的“更多 > 克隆”,参照创建科学计算大模型训练任务填写参数,可以复制当前训练任务。 停止。单击操作列的“更多
Array of ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 参数类型 描述 bucket String 输入数据的OBS桶名称。 path String 初始场数据的存放路径。 表5 TaskOutputDto 参数 参数类型
确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细
于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。 与非专业大模型相比,专业大模型针对特定场景优化,更适合执行数据分析、报告生成和业务洞察等任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的专业大模型,以满足不同场景和需求。以
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单
模型评估”将对您之前上传的测试集进行评估。通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通
具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据发布和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和
'EQUAL-TO'}]}}"} 数据量级要求:本场景使用了30000条数据进行微调。 类似场景需要的微调数据量视具体情况而定,从经验上来说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。 保证数据的覆盖度:数
置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型
单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。