检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
添加Hive的Ranger访问权限策略。 Hive权限模型 使用Hive组件,必须对Hive数据库和表(含外表和视图)拥有相应的权限。在MRS中,完整的Hive权限模型由Hive元数据权限与HDFS文件权限组成。使用数据库或表时所需要的各种权限都是Hive权限模型中的一种。 Hive元数据权限。
由相同类型的元素构成的一个数组, 一行数据的所有列值在各自的数组中按照列顺序排列,即拥有相同的数组下标。数组下标是隐式的,不需要存储。表中所有的行按照维度列,做多重排序,排序后的位置就是该行的行号。 索引 StarRocks通过前缀索引 (Prefix Index) 和列级索引,
流量管控:支持按地区限制数据传输所占用的网络带宽,避免在跨地域有限带宽场景下因流量独占而影响其他业务的正常使用。 跨域功能使用指导 前提条件: 确保本端和远端集群的数据节点上分别部署至少一个HSFabric实例。 确保本端和远端集群的HSFabric实例所在节点的网络互通。 操作步骤: 开放本域数据源。通过创建Virtual
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
Hive简介 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HiveQL语言操作结构化数据,其基本原理是将HiveQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下:
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
L、Derby。Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。 Hive结构 Hive为单实例的服务进程,提供服务的原理是将HQL编译解析成相应的MapReduce或者HDFS任务,图1为Hive的结构概图。 图1 Hive结构
仅作数据计算处理的存算分离场景。 用户通过IAM服务的“委托”机制进行简单配置,即可实现OBS的访问。 方案架构 Hive是建立在Hadoop上的数据仓库框架,提供大数据平台批处理计算能力,能够对结构化/半结构化数据进行批量分析汇总完成数据计算。提供类似SQL的Hive Query
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
添加Hive的Ranger访问权限策略。 Hive权限模型 使用Hive组件,必须对Hive数据库和表(含外表和视图)拥有相应的权限。在MRS中,完整的Hive权限模型由Hive元数据权限与HDFS文件权限组成。使用数据库或表时所需要的各种权限都是Hive权限模型中的一种。 Hive元数据权限。
Spark跨源复杂数据的SQL查询优化 场景描述 出于管理和信息收集的需要,企业内部会存储海量数据,包括数目众多的各种数据库、数据仓库等,此时会面临以下困境:数据源种类繁多,数据集结构化混合,相关数据存放分散等,这就导致了跨源复杂查询因传输效率低,耗时长。 当前开源Spark在跨
FineBI是一款商业智能产品,针对企业信息化遇到的困难,为企业提供专业的商业智能解决方案。 本章节以FineBI 5.1.9版本为例,讲解如何使用FineBI访问安全模式MRS集群的HetuEngine。 方案架构 出于管理和信息收集的需要,企业内部会存储海量数据,包括数目众多的各种数据库、数据仓库等,此时会面临
由于“spark”用户在HDFS ACL的权限控制上为Spark管理员用户权限,Beeline客户端用户的权限控制仅取决于Spark侧的元数据权限。 视图权限介绍 视图权限是指仅对表的视图具有查询、修改等操作的权限,不再依赖于视图所在的表的相应权限。即用户拥有视图的查询权限时,不管是否有表权限
由于“spark”用户在HDFS ACL的权限控制上为Spark管理员用户权限,Beeline客户端用户的权限控制仅取决于Spark侧的元数据权限。 视图权限介绍 视图权限是指仅对表的视图具有查询、修改等操作的权限,不再依赖于视图所在的表的相应权限。即用户拥有视图的查询权限时,不管是否有表权限
Spark开源增强特性 跨源复杂数据的SQL查询优化 出于管理和信息收集的需要,企业内部会存储海量数据,包括数目众多的各种数据库、数据仓库等,此时会面临以下困境:数据源种类繁多,数据集结构化混合,相关数据存放分散等,这就导致了跨源复杂查询因传输效率低,耗时长。 当前开源Spark
本章节主要介绍ClickHouse创建数据库的SQL基本语法和使用说明。 基本语法 CREATE DATABASE [IF NOT EXISTS] database_name [ON CLUSTER ClickHouse集群名] ON CLUSTER ClickHouse集群名的语法,使得该DDL语句
tor和oracle-connector具有以下优点: 负载均匀,数据分片的个数和范围与源表的数据无关,而是由源表的存储结构(数据块)确定,颗粒度可以达到“每个数据块一个分区”。 性能稳定,完全消除“数据偏斜”和“绑定变量窥探”导致的“索引失效”。 查询速度快,数据分片的查询速度比用索引快。
MRS管理控制台和集群Manager页面功能区别有哪些? 问: MRS管理控制台和集群Manager页面有什么区别与联系? 答: 用户可以通过MRS管理控制台页面登录到MRS的Manager页面。 Manager分为MRS Manager和FusionInsight Manager,其中: