检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Hive JDBC接口遵循标准的JAVA JDBC驱动标准。 Hive作为数据仓库类型数据库,其并不能支持所有的JDBC标准API。例如事务类型的操作:rollback、setAutoCommit等,执行该类操作会获得“Method not supported”的SQLException异常。
仅作数据计算处理的存算分离场景。 用户通过IAM服务的“委托”机制进行简单配置,即可实现OBS的访问。 方案架构 Hive是建立在Hadoop上的数据仓库框架,提供大数据平台批处理计算能力,能够对结构化/半结构化数据进行批量分析汇总完成数据计算。提供类似SQL的Hive Query
L、Derby。Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。 Hive结构 Hive为单实例的服务进程,提供服务的原理是将HQL编译解析成相应的MapReduce或者HDFS任务,图1为Hive的结构概图。 图1 Hive结构
JDBC接口遵循标准的JAVA JDBC驱动标准,详情请参见JDK1.7 API。 Hive作为数据仓库类型数据库,其并不能支持所有的JDBC标准API。 例如事务类型的操作:rollback、setAutoCommit等,执行该类操作会产生“Method not supported”的SQLException异常。
单击“确定”,完成生命周期规则配置。 若您需修改生命周期的内容,请单击该生命周期规则所在行右侧的“编辑”进行编辑;单击“禁用”,可以禁用该生命周期规则,单击“启用”,可启用该生命周期规则。 继续参考以上步骤,逐一创建针对当前MRS集群所有具有数据删除权限的用户的回收站目录清理策略
ClickHouse设计规范概述 内容介绍 本文主要描述ClickHouse数据管理全生命周期过程中,数据库规划、建模设计、开发、调优、运维的规则建议和指导。 通过这些约束和建议,指导开发者在ClickHouse数据库开发使用过程中能够最大化发挥数据库的优势,保障ClickHouse
如果用户访问别人创建的表或数据库,需要授予权限。所以根据Hive使用场景的不同,用户需要的权限可能也不相同。 表1 Hive使用场景 主要场景 用户需要的权限 使用Hive表、列或数据库 使用其他用户创建的Hive表、列或数据库,不同的场景需要不同的Hive权限,例如: 创建表,需要“建表”权限。
ClickHouse支持CSV、JSON等格式文件的数据导入导出操作。本章节主要介绍怎么把DWS数据仓库服务中的表数据导出到CSV文件,再把CSV文件数据导入到ClickHouse表中。 前提条件 ClickHouse集群和实例状态正常。 DWS集群已创建,已获取到相关表所在的数据库用户名和密码。 已安
MergeTree引擎在建表的时候支持列字段和表级的TTL。 当列字段中的值过期时,ClickHouse会将其替换成数据类型的默认值。如果分区内,某一列的所有值均已过期,则ClickHouse会从文件系统中删除这个分区目录下的列文件。当表内的数据过期时,ClickHouse会删除所有对应的行。 在列上配置TTL:
参数名称 参数含义 来源 产生告警的集群或系统名称。 服务名 产生告警的服务名称。 角色名 产生告警的角色名称。 主机名 产生告警的主机名。 对系统的影响 出现该告警说明某些进程发生了crash。如果是关键进程发生crash,可能会导致集群短暂的不可用。 可能原因 相关进程发生crash。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成Mapreduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
如果用户访问别人创建的表或数据库,需要授予权限。所以根据Hive使用场景的不同,用户需要的权限可能也不相同。 表1 Hive使用场景 主要场景 用户需要的权限 使用Hive表、列或数据库 使用其他用户创建的Hive表、列或数据库,不同的场景需要不同的Hive权限,例如: 创建表,需要“建表”。
流量管控:支持按地区限制数据传输所占用的网络带宽,避免在跨地域有限带宽场景下因流量独占而影响其他业务的正常使用。 跨域功能使用指导 前提条件: 确保本端和远端集群的数据节点上分别部署至少一个HSFabric实例。 确保本端和远端集群的HSFabric实例所在节点的网络互通。 操作步骤: 开放本域数据源。通过创建Virtual
域展示)等场景下。 为保证Hive服务的高可用性、用户数据的安全及访问服务的可控制,在开源社区的Hive-3.1.0版本基础上,Hive新增如下特性: 基于Kerberos技术的安全认证机制。 数据文件加密机制。 完善的权限管理。 开源社区的Hive特性,请参见https://cwiki
Hive应用开发简介 Hive简介 Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HiveQL语言操作结构化数据,其基本原理是将HiveQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下:
Hive是一个开源的,建立在Hadoop上的数据仓库框架,提供类似SQL的HQL语言操作结构化数据,其基本原理是将HQL语言自动转换成MapReduce任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。
域展示)等场景下。 为保证Hive服务的高可用性、用户数据的安全及访问服务的可控制,在开源社区的Hive-3.1.0版本基础上,Hive新增如下特性: 基于Kerberos技术的安全认证机制。 数据文件加密机制。 完善的权限管理。 开源社区的Hive特性,请参见https://cwiki
设备上。但在逻辑上,一列数据可以看成是由相同类型的元素构成的一个数组, 一行数据的所有列值在各自的数组中按照列顺序排列,即拥有相同的数组下标。数组下标是隐式的,不需要存储。表中所有的行按照维度列,做多重排序,排序后的位置就是该行的行号。 索引 StarRocks通过前缀索引 (Prefix
依赖于视图所在的表的相应权限。即用户拥有视图的查询权限时,不管是否有表权限都可以进行查询。视图的权限是针对整个表而言的,不支持对其中的部分列创建视图权限。 视图权限在SparkSQL权限上的限制与列权限相似,详细如下: 在spark-sql模式下,只有视图权限而没有表权限,且没有