检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
描述,进入AI的编排页面。 进行AI人设设置,在左上角“提示词”处输入Prompt ,设定该AI与用户交谈时的语气和风格。 智能客服提示词示例:你是一个友好的智能客服助手,负责解答用户提出的关于产品的问题、处理订单、提供技术支持。当用户提出的问题你没有找到合适答案的时候,要回答不知道。
由于商用模型支持同时购买多种配额模式的资产,所以仅部署商用模型时需要进行配额选择。免费模型仅一种配额模式无需选择。 图2 修改配额 如果您选择部署的非商业模型,系统自动跳转至“部署”页面。 在部署页面中,无需再选择模型及其版本,参考部署模型的操作指导完成其他参数填写,即可部署为您需要的服务。 父主题:
Standard 面向AI开发者的一站式开发平台, 提供了简洁易用的管理控制台,包含自动学习、数据管理、开发环境、模型训练、模型管理、部署上线等端到端的AI开发工具链,实现AI全流程生命周期管理。 面向有AI开发平台诉求的用户。 ModelArts MaaS 提供端到端的大模型生产工具链和昇
String 自动化搜索作业的yaml配置路径,需要提供一个OBS路径。 autosearch_framework_path String 自动化搜索作业的框架代码目录,需要提供一个OBS路径。 command String 自定义镜像训练作业的自定义镜像的容器的启动命令。可填code_dir。
随着request rate增大的e2e结果变化走势图。 右下图为满足SLO要求下两种模式的吞吐变化曲线。 手动配比调优步骤 跑出一至多个混推实例,并使用脚本绘制各个验证结果。 分析混推图片结果,判断当前实例个数下是否会有收益。调优经验:混推模式下全量能力大于增量能力时,PD分离部署会有收益。
提供节点级、作业级、容器级,多级故障恢复,保障千卡作业稳定训练。 多种资源形态 集群模式,开箱即提供好Kubernetes集群,直接使用,方便高效。 节点模式,客户可采用开源或自研框架,自行构建集群,更强的掌控力和灵活性。 零改造迁移 提供业界通用的k8s接口使用资源,业务跨云迁移无压力。 SSH直达节点和容器,一致体验。
描述,进入AI的编排页面。 进行AI人设设置,在左上角“提示词”处输入Prompt ,设定该AI与用户交谈时的语气和风格。 智能客服提示词示例:你是一个友好的智能客服助手,负责解答用户提出的关于产品的问题、处理订单、提供技术支持。当用户提出的问题你没有找到合适答案的时候,要回答不知道。
当模型创建成功后,您可在模型列表页查看所有创建的模型。模型列表页包含以下信息。 表1 模型列表 参数 说明 模型名称 模型的名称。 最新版本 模型的当前最新版本。 状态 模型当前状态。 部署类型 模型支持部署的服务类型。 版本数量 模型的版本数量。 请求模式 在线服务的请求模式。 同步请求:单次推理,可同步返回结果(约<60s)。例如:
String Pascal VOC格式的XML文件保存路径。 session 否 Object 会话对象,初始化方法请参见Session鉴权。 当需要操作OBS时必填。 save_mode 否 String 保存模式。默认为w,即重写模式,另外还支持a,为追加模式。 父主题: Manifest管理
常见的磁盘空间不足的问题和解决办法 该章节用于统一整体所有的常见的磁盘空间不足的问题和解决办法。减少相关问题文档的重复内容。 问题现象 训练过程中复制数据/代码/模型时出现如下报错: 图1 错误日志 原因分析 出现该问题的可能原因如下: 本地数据、文件保存将"/cache"目录空间用完。
描述。 基础设置部分包含了该资产所有重要的结构化元数据信息。选择填入的信息将会变成该模型资产的标签,并且自动同步在模型描述部分,保存到“README.md”文件里。 模型描述部分是一个可在线编辑、预览的Markdown文件,里面包含该模型的简介、能力描述、训练情况、引用等信息。编辑内容会自动保存在“README
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ { "instruction":
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ { "instruction":
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ { "instruction":
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ { "instruction":
enizer的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练
tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler:默认。用于预训练时的数据预处理过程中,将数据集根据key值进行简单的过滤。 --seq-length:要处理的最大seq
instruction:描述模型应执行的任务。指令中的每一条都是唯一的。 input:任务的可选上下文或输入。instruction 对应的内容会与 input 对应的内容拼接后作为指令,即指令为 instruction\ninput。 output:生成的指令的答案。 [ { "instruction":
tokenizer的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理时,要执行的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模
Pair的key为难例原因出现的次数,Pair的value为难例原因HardDetail。 key_sample_stats Map<String,Integer> 难例统计信息。 label_stats Array of LabelStats objects 标签统计信息列表。