检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“预置服务”页签,模型列表单击“调用路径”,获取该模型的部署ID。
科学计算大模型训练常见报错及解决方案请详见表1。 表1 科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
停止计费 包周期服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
是否仅统计输入字符的Token数 true:仅统计输入字符串的Token数; false:统计输入字符串和推理过程产生字符的总Token数。 响应参数 表4 响应Body参数 参数 参数类型 描述 tokens List<String> 分解出的Token列表。 token_number
用于调整模型对频繁出现的词汇的处理方式。调高参数会使模型减少相同词汇的重复使用,促使模型使用更多样化的词汇进行表达。 默认值:0 历史对话保留轮数 选择“文本对话”功能时具备此参数。表示系统能够记忆的历史对话数。 默认值:10 如图1,输入对话,单击“生成”,模型将输出相应的回答。 图1 调测NLP大模型
权限管理 如果您需要对华为云上购买的盘古大模型资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增
让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。
作业输入方式 选择 “OBS”表示从OBS中读取数据。 作业输出方式 选择 “OBS”表示将输出结果存储在OBS中。 作业配置参数 设置模型部署参数信息,平台已给出默认值。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置
创建专业大模型部署任务 平台支持部署预置的专业大模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。 表1 专业大模型部署参数说明 参数分类
这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确、更有针对性的输出,从而提高模型在特定任务上的性能。 在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造 。如果提示词模板满足不了使用需求可再单独创建。
单击右上角“模型更新”,进入“模型更新”页面。 在“可修改配置 > 部署模型”中,可选择模型以替换当前已部署的模型。 在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:
单击右上角“模型更新”,进入“模型更新”页面。 在“可修改配置 > 部署模型”中,可选择模型以替换当前已部署的模型。 在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:
单击右上角“模型更新”,进入“模型更新”页面。 在“可修改配置 > 部署模型”中,可选择模型以替换当前已部署的模型。 在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:
如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码 为什么微调后的盘古大模型的回答会异常中断 为什么微调后的盘古大模型只能回答训练样本中的问题 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同
单击右上角“模型更新”,进入“模型更新”页面。 在“可修改配置 > 部署模型”中,可选择模型以替换当前已部署的模型。 在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:
单击右上角“模型更新”,进入“模型更新”页面。 在“可修改配置 > 部署模型”中,可选择模型以替换当前已部署的模型。 在“升级配置”中,选择以下两种升级模式: 全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级: