检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
提前准备用于模型训练的数据,上传至OBS服务中。 设计分类标签 首先需要确定好文本分类的标签,即希望识别出文本的一种结果。例如分类用户对商品的评论,则可以以“positive”、“neutral”、“negative”等作为用户对某商品评论的分类标签,可以设计为“positive
提前准备用于模型训练的数据,上传至OBS服务中。 设计分类标签 首先需要确定好文本分类的标签,即希望识别出文本的一种结果。例如分类用户对商品的评论,则可以以“positive”、“neutral”、“negative”等作为用户对某商品评论的分类标签,可以设计为“positive
在使用热轧钢板表面缺陷检测工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计钢板标签 首先需要考虑好热轧钢板表面缺陷的类型标签,即能识别出热轧钢板表面的缺陷类型。例如以“scratch”、“scar”、“pit”等作为热轧钢板表面缺陷的类型。 数据集要求
准备数据 在使用通用实体抽取工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计实体标签 首先需要确定好文本实体的标签,即希望抽取出文本的一种结果。例如“时间”、“地点”、“人物”等。 数据集要求 文件格式要求为txt或者csv,且编码格式为“UTF-8”格式,文件大小不能超过8MB。
文件名规范,不能有中文,不能含有空格、制表符及除中划线下划线外的特殊符号。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量,不能有损坏的图片。目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一
图片中的多个商品。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。
要提前准备用于模型训练的数据,上传至OBS服务中。 设计车牌标签 首先需要考虑好车牌的标签类型,即希望识别出图片中车牌的一种结果。例如“plate”。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。
HiLens套件 HiLens为端云协同AI应用开发平台,提供简单易用的开发框架、开箱即用的开发环境、丰富的AI技能市场和云上管理平台,帮助用户高效开发多模态AI技能,并将其快速部署到端侧计算设备。 HiLens套件提供可训练技能模板开发技能,无需代码,只需自主上传训练数据,快速
待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 选择步骤1:准备数据中提前创建好的输出数据集的OBS路径“mapro-vison/data-out”。 勾选已上传的数据集。 由于本样例上传的数
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP,且单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷
物流场景需要处理各种格式的票据图片,用户可以通过简单的标注生成自己的专属模板,实现关键字段的自动识别和提取。 特点:对各种格式的票据图片,可制作模板实现关键字段的自动识别和提取。 优势:支持不同格式票据图片的自动识别和结构化提取。通过可视化界面操作,轻松指定识别区域,完成模板设计并调用服务接口。
模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”新建应用,并训练模型,详情请见训练模型。
训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并训练模型,详情请见训练模型。
选择数据 在使用热轧钢板表面缺陷检测工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于热轧钢板表面缺陷检测工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入数据集 前提条件 已在视
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练安全帽检测模型。 前提条件 已创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts Pro在同一区域,详情请见创建OBS桶。 已在ModelArts Pro控制台选择“HiL
工作流简介 在钢铁厂中,钢板的材质、热处理工艺以及使用环境等外界因素均会影响钢板的使用寿命,而这些外界因素导致钢板缺陷。研究钢板表面的缺陷类型对钢板的使用寿命至关重要,ModelArts Pro提供热轧钢板表面缺陷检测工作流,提供高精度钢板表面缺陷识别算法,提高钢板表面缺陷检测场景上线效率。
备用于模型训练的数据,上传至OBS服务中。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括jpg、jpeg、bmp、png。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。