检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果您需要对华为云上购买的盘古资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)并结合盘古大模型套件平台提供的“角色管理”功能实现精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权
为什么微调后的模型,回答中会出现乱码 为什么微调后的模型,回答会异常中断 为什么微调后的模型,只能回答在训练样本中学过的问题 为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 为什么微调后的模型,评估结果很好,但实际场景表现却很差 多轮问答场景,为什么微调后的效果不好 数据量满足要求,为什么微调后的效果不好
多样性与一致性 多样性和一致性是评估LLM生成语言的两个重要方面。 多样性指模型生成的不同输出之间的差异。一致性指相同输入对应的不同输出之间的一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入的惩罚项,旨在减少重复生成的可能性。通
提示词撰写完成后,可以通过输入具体的变量值,组成完整的提示词,查看不同提示词在模型中的使用效果。 在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。用户也可以直接选择已创建的变量集填入变量值信息,变量集是一个e
Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。 # 盘古模型IAM
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集
用、监管有力的制度,并加强对专项资金的监督和管理。严格控制专项资金的流向和使用范围,严禁有过度功能的行为,坚决杜绝虚假、虚报和恶意投资,建立完善的监督管理制度,加强随时的监督和核查,确保专项资金使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如
盘古自然语言大模型的适用场景有哪些 自然语言处理大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模
在工程任务列表页面,找到所需要操作的工程任务,单击该工程名称,跳转工程任务下候选提示词页面。 图1 提示词工程 选中需要评估的候选提示词,单击左上角“创建评估”按钮,跳转评估任务创建页面。 图2 创建评估 选择评估使用的变量数据集和评估方法。 数据集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。
具备对话问答能力。 功能模型:功能模型是在基模型的基础上经过微调,专门适应特定任务,并具备对话问答的能力。经过特定场景优化的功能模型能够更有效地处理文案生成、阅读理解、代码生成等任务。 专业大模型:针对特定场景优化的大模型。例如,与非专业大模型相比,BI专业大模型更适合执行数据分析、报告生成和业务洞察等任务。
根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,
为什么微调后的模型,只能回答在训练样本中学过的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘
、文本分类等。 指标不适用的任务场景 文案创作、聊天等符合要求即可的场景,该类场景的创作型更强,不存在唯一答案。 指标与模型能力的关系 BLEU指标用于评估模型生成句子(candidate)与实际句子(reference)差异的指标。取值范围在0.0到1.0之间,值越高说明模型生成和实际答案匹配度越高。
科技行业公司的最大利润和市值是多少? 科技行业公司的最小利润和市值是多少? 科技行业公司的中位利润和市值是多少? 科技行业公司的总利润和市值是多少? … 来源四:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,再基于大模型(比如盘古提供的任意一个规格的基础功能模
帮助开发者高效构建与部署模型,企业可灵活选择适合的服务与产品,轻松实现模型与应用的开发。 公测 产品介绍 2 盘古大模型「应用百宝箱」上线 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,首批支持14个开箱即用的大模型应用。用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。
单击评估名称,进入评估任务详情页,可以查看详细的评估进度。例如,在图2中有10条评估用例,当前已经评估了8条,剩余2条待评估。 图2 查看评估进展 评估完成后,进入“评估报告”页面,可以查看每条数据的评估结果。 在评估结果中,“预期结果”即为变量值(问题)所预设的期望回答,“生成结果”即模型回复的结果。通过比较
常见训练报错与解决方案 read example failed报错 报错原因:模型训练过程中,训练日志出现“read example failed”报错,表示当前数据集格式不满足训练要求。 解决方案:请参考数据格式要求校验数据集格式。 图1 read example failed报错
LoRA轶值 / 8、16、32、64 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 训练轮数 4 1~50 完成全部训练数据集训练的次数。 学习率 0.0001 0~1
安全 责任共担 身份认证与访问控制 数据保护技术 审计 监控安全风险