检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。
用任务的基础能力,但还没有针对特定的业务场景进行优化。预训练后的模型主要用于多个任务的底层支持。 通过使用海量的互联网文本语料对模型进行预训练,使模型理解人类语言的基本结构。 微调 关注专业性:微调是对预训练模型的参数进行调整,使其在特定任务中达到更高的精度和效果。微调的核心在于
Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。 针对“零码”开发者(无代码开发经验),
介绍文字识别服务的产品、技术指导和使用指南 OCR系列介绍 文字识别服务在计算机视觉的重要性、基本技术和最新进展 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这里有来自容器服务的技术牛人,为您解决技术难题。
当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。 基本信息 服务名称 设置部署任务的名称。 描述(选填) 设置部署任务的描述。 参数填写完成后,单击“立即部署”。
选择“预测大模型”。 部署模型 选择需要进行部署的模型。 部署方式 选择“云上部署”。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将这些提示词发布至“提示词模板”中。 在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。 父主题: 开发盘古大模型提示词工程
选择“CV大模型”。 部署模型 选择需要进行部署的模型。 部署方式 选择“云上部署”。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该
选择“NLP大模型”。 部署模型 选择需要进行部署的模型。 部署方式 选择“云上部署”。 最大TOKEN长度 模型可最大请求的上下文TOKEN数。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。
如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码 为什么微调后的盘古大模型的回答会异常中断 为什么微调后的盘古大模型只能回答训练样本中的问题 为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同
本节介绍盘古大模型服务在使用过程中的约束和限制。 规格限制 盘古大模型服务的规格限制详见表1。 表1 规格限制 资产、资源类型 规格 说明 模型资产、数据资源、训练资源、推理资源 所有按需计费、包年/包月中的模型资产、数据资源、训练资源、推理资源。 购买的所有类型的资产与资源仅支持在西南-贵阳一区域使用。
人满意的精度。此外,模型具备自我学习和不断进化的能力,随着新数据的持续输入,其性能和适应性不断提升,确保在多变的语言环境中始终保持领先地位。 应用场景灵活 盘古大模型具备强大的学习能力,能够通过少量行业数据快速适应特定业务场景的需求。模型在微调后能够迅速掌握并理解特定行业的专业知
学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。 训练轮数 表示完成全部训练数据集训练的次数。每个轮次都会遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,
创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。 请提前创建与大模型对应的训练数据集,并完成数据集发布操作。 训练日志提示“root: XXX valid number is 0”报错 日志提示“root: XXX valid number is 0”,表示训练集/验证集的有效样本量为0,例如:
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练NLP大模型
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练预测大模型
{1:'apple', 2:'orange', 3:'banana'} 训练集中的标签个数与验证集中的个数不一致,导致该错误发生。 例如,训练集中的标签共有4个,验证集中的标签只有3个。 请保持数据中训练集和验证集的标签数量一致。 父主题: 训练CV大模型
问答匹配的精确度,模型生成句子与实际句子相比的精确程度,数值越高,表明模型性能越好。 表2 NLP大模型自动评测指标说明-使用评测模板 评测指标(自动评测-使用评测模板) 指标说明 评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力
高。 API Key鉴权:通过唯一的API Key来认证应用之间的访问权限,可以使用Header鉴权或Query鉴权的方式,需要提供密钥鉴权参数名和密钥值,安全性较低。 请求头 插件服务的请求头。添加请求的数据格式等说明,敏感信息请通过权限校验的方式实现。 自定义插件使用HTTP