检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
过收集政务问答数据和相关政务问答文档,基于检索增强问答框架,构建了一个智能化的政务问答助手。 图1 政务问答智能助手整体框架 上图给出了政务问答智能助手的整体框架。该框架由query改写模块、中控模块、检索模块和问答模块组成: query改写模块:针对多轮对话中经常出现的指代和信
如何将本地的数据上传至平台 ModelArts Studio平台支持从OBS服务导入数据。您可以将本地数据上传至OBS(对象存储服务),然后通过平台提供的“数据导入”功能,将存储在OBS中的数据导入至平台进行使用。 具体操作步骤如下: 上传数据至OBS:将本地数据上传至OBS服务,请详见通过控制台快速使用OBS。
盖全生命周期的大模型工具链。 ModelArts Studio大模型开发平台为开发者提供了一种简单、高效的开发和部署大模型的方式。平台提供了包括数据处理、模型训练、模型部署、Agent开发等功能,以帮助开发者充分利用盘古大模型的功能。企业可以根据自己的需求选取合适的大模型相关服务和产品,方便地构建自己的模型和应用。
2024年11月发布的版本,仅支持32K序列长度推理部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古NLP大模型支持的具体操作: 表2 盘古NLP大模型支持的能力
导入数据过程中,为什么无法选中OBS的具体文件进行上传 在数据导入过程中,平台仅支持通过OBS服务导入文件夹类型的数据,而不支持直接导入单个文件。 您需要将文件整理到文件夹中,并选择该文件夹进行上传。 父主题: 大模型使用类问题
理资源的扩缩容,即在当前资源的基础上扩充或缩小对应的资源。 资源扩缩容的步骤如下: 登录ModelArts Studio大模型开发平台,单击页面右上角“订购管理”。 在“订购管理”页面,单击“资源订购”页签,在资源列表单击操作列“扩缩容”。 在“扩缩容”页面完成当前资源的扩缩容操
关注繁琐的编码工作。它不仅提升了代码的质量和稳定性,还缩短了开发周期,加速了产品的迭代和发布。 政务 通过CV大模型结合无代码/低代码AI开发工作流,面向城市政务场景的碎片化长尾需求,将传统的“专家式”、“作坊式”开发模式转变为“流水线”生产。 在城市政务“一网统管”的场景中,往
盘古CV大模型基于海量图像、视频数据和盘古独特技术构筑的视觉基础模型,赋能行业客户利用少量场景数据对模型微调即可实现特定场景任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的CV大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 模型支持区域
从基模型训练出行业大模型 打造短视频营销文案创作助手 打造政务智能问答助手 基于NL2JSON助力金融精细化运营
数据集的整体质量。 数据发布:平台提供了数据评估、数据配比、数据流通的发布操作,旨在通过数据质量评估与合理的比例组合,确保数据满足大模型训练的多样性、平衡性和代表性需求,并促进数据的高效流通与应用。 数据评估:数据评估通过对数据集进行系统的质量检查,依据评估标准评估数据的多个维度,旨在发现潜在问题并加以解决。
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
单击数据集名称查看发布数据集的基本信息、数据预览、数据血缘以及操作记录。 在“基本信息”页签可查看数据集的详细信息。 在“数据预览”页签可查看发布后的数据内容。 在“数据血缘”页签查看该数据集所经历的操作,如导入、合成等操作。 在“操作记录”页签可以查看数据集所经历的操作及状态等信息。
Face团队推出的一种大模型请求格式。 接口的响应体需要按照jsonpath语法要求进行填写,jsonpath语法的作用是从响应体的json字段中提取出所需的数据。 评测配置 评测类型 选择“自动评测”。 评测规则 选择“基于规则”。 评测数据集 评测模板:使用预置的专业数据集进行评测。
变更计费模式 盘古大模型的模型订阅、数据托管单元、推理单元默认采用包周期计费,数据智算单元、数据通算单元默认采用按需计费,训练单元采用包周期和按需计费两种方式。 盘古大模型使用周期内不支持变更配置。
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单
数据发布功能通过数据评估和配比,确保发布的数据集满足大模型训练的高标准。这不仅包括数据规模的要求,还涵盖了数据质量、平衡性和代表性的保证,避免数据不均衡或不具备足够多样性的情况,进而提高模型的准确性和鲁棒性。 提高数据的多样性和代表性 通过合理的数据配比,帮助用户按特定比例组合多个数
在“数据血缘”页签查看该数据集所经历的操作,如导入、合成等操作。 在“操作记录”页签可以查看数据集所经历的操作及状态等信息。 单击操作列的“删除”,可删除不需要的数据集。 如果需要恢复删除的数据集,可单击右上角“显示已删除数据”,被删除的数据集将在列表显示,可将数据集恢复。 如果需要彻底删除
用于配置大模型的输出多样性。 包含取值: 精确的:模型的输出内容严格遵循指令要求,可能会反复讨论某个主题,或频繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。
服务,便捷地构建自己的模型和应用。 数据工程工具链:数据是大模型训练的核心基础。数据工程工具链作为平台的重要组成部分,具备数据获取、数据加工和数据发布等功能,确保数据的高质量与一致性。工具链能够高效收集并处理各种格式的数据,满足不同训练任务的需求,并提供强大的数据存储和管理能力,为大模型训练提供坚实的数据支持。
为确保有可用的NLP大模型,请先完成NLP大模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 本实践将使用华为云文本翻译API,请先完成创建多语言文本翻译插件操作。 操作流程 创建盘古多语言文本翻译工作流的流程见表1。