检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
e.printStackTrace(); System.out.println(e.getHttpStatusCode()); System.out.println(e.getRequestId());
JavaSparkContext jsc = new JavaSparkContext(conf); // 建立连接hbase的配置参数,此时需要保证hbase-site.xml在classpath中 Configuration hbConf = HBaseConfiguration
JavaSparkContext jsc = new JavaSparkContext(conf); // 建立连接hbase的配置参数,此时需要保证hbase-site.xml在classpath中 Configuration hbConf = HBaseConfiguration
MyRegistrator") val sc = new SparkContext(conf) // 建立连接hbase的配置参数,此时需要保证hbase-site.xml在classpath中 val hbConf = HBaseConfiguration
个不同的租户统称多租户。 多租户功能支持层级式的租户模型,支持动态的添加和删除租户,实现资源的隔离,可以对租户的计算资源和存储资源进行动态配置和管理。 计算资源指租户Yarn任务队列资源,可以修改任务队列的配额,并查看任务队列的使用状态和使用统计。 存储资源目前支持HDFS存储,
上region的个数,即2000),则调整方案为(实际规格 / 默认规格)* 默认时间。 在服务端的“hbase-site.xml”文件中配置splitlog参数,如表1所示。 表1 splitlog参数说明 参数 描述 默认值 hbase.splitlog.manager.timeout
nitorlog/pluginmonitor.log”中搜索“Large tablets have”查看所有较大的Tablet信息。 登录安装了MySQL的节点,执行以下命令,连接Doris数据库。 若集群已启用Kerberos认证(安全模式),需先执行以下命令再连接Doris数据库:
ssc = new StreamingContext(sparkConf, Seconds(batchSize.toLong)) //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir)
ssc = new StreamingContext(sparkConf, Seconds(batchSize.toLong)) //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir)
ssc = new StreamingContext(sparkConf, Seconds(batchSize.toLong)) //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir)
hdfsFileFreeReadStatistics(stats); 断开HDFS文件系统连接。 hdfsDisconnect(fs); 准备运行环境 在节点上安装客户端,例如安装到“/opt/client”目录。 Linux中编译并运行程序 进入Linux客户端目录,运行如下命令导入公共环境变量: cd/opt/client
hdfsFileFreeReadStatistics(stats); 断开HDFS文件系统连接。 hdfsDisconnect(fs); 准备运行环境 在节点上安装客户端,例如安装到“/tmp/client”目录。 Linux中编译并运行程序 进入Linux客户端目录,运行如下命令导入公共环境变量: cd/opt/client
打包项目 将user.keytab、krb5.conf 两个文件上传客户端所在服务器上。 通过IDEA自带的Maven工具,打包项目,生成jar包。具体操作请参考在Linux环境中调测Spark应用。 编译打包前,样例代码中的user.keytab、krb5.conf文件路径需要修改为
StreamExecutionEnvironment.getExecutionEnvironment(); // 设置相关配置,并开启checkpoint功能 env.setStateBackend(new FsStateBackend("hdfs
StreamExecutionEnvironment.getExecutionEnvironment(); // 设置相关配置,并开启checkpoint功能 env.setStateBackend(new FsStateBackend("hdfs
export HIVE_OPTS=-Xmx1024M(具体数值请根据业务调整),并重新执行source 客户端目录/bigdata_env配置环境变量。 父主题: 使用Hive
employees_info_extended ADD COLUMNS (tel_phone STRING, email STRING); 建表时配置Hive数据加密 指定表的格式为RCFile(推荐使用)或SequenceFile,加密算法为ARC4Codec。SequenceFile
JavaSparkContext jsc = new JavaSparkContext(conf); // 建立连接hbase的配置参数,此时需要保证hbase-site.xml在classpath中 Configuration hbConf = HBaseConfiguration
ssc = new StreamingContext(sparkConf, Seconds(batchSize.toLong)) //配置Streaming的CheckPoint目录。 //由于窗口概念的存在,此参数是必需的。 ssc.checkpoint(checkPointDir)
ats); free(buffer); 断开HDFS文件系统连接。 hdfsDisconnect(fs); 准备运行环境 在节点上安装客户端,例如安装到“/opt/client”目录。 Linux中编译并运行程序 进入Linux客户端目录,运行如下命令导入公共环境变量: cd/opt/client