检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
配置AI助手工具 各种功能的API经封装后,将形成一个个工具,AI助手通过大模型来调用不同的工具,实现相应的功能。在创建AI助手前,需要将使用的功能封装为工具。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理 在“
@AgentTool注解说明: toolId。表示工具的标识,建议为英文且与实际工具含义匹配,在同一个Agent中唯一。 toolDesc。工具的描述,为重要参数,尽可能的准确简短描述工具的用途。 toolPrinciple。表示何时使用该工具,为重要参数。该描述直接影响LLM对工具使用的判断,尽量描述清楚。
@Tool说明: name。工具的标识,建议为英文且与实际工具含义匹配,在同一个Agent中唯一。 description。工具的描述,建议为中文,尽可能的简短描述工具。 principle。何时使用该工具,为重要参数,该描述直接影响LLM对工具使用的判断,尽量描述清楚。如果Ag
Agent在实际生产应用中往往涉及到的工具数量较多,如果把所用的工具全部添加至Agent会产生如下问题: 占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理。
添加Agent流式输出(Python SDK) Agent用于工具调用场景,与普通的LLM流式输出相比,区分了文本流与工具流。 文本流将输出模型的思考过程和最终结果;工具流将输出工具的调用过程,而工具的调用的执行结果是通过监听获取的。 通过如下接口为Agent添加流式输出的回调: from pangukitsappdev
Agent在实际生产应用中往往涉及到的工具数量较多,如果把所用的工具全部添加至Agent会产生如下问题: 占用大量输入token。 和问题无关的工具太多,影响模型的判断。 通过Tool Retriever可以解决上述问题,其原理是在Agent运行前,先从所有可用的工具中选择与问题最相关的工具,再交给Agent去处理,示例如下:
add_tool(SearchTool()) 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过set_max_iterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-Agent-L0
添加Agent流式输出(Java SDK) Agent用于工具调用场景,与普通的LLM流式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback
幽默。 多工具混合调用:AI助手可以集成不同功能的工具来解决问题,这使得AI助手能够处理各种复杂的任务。 统一调用入口:AI助手通过一个统一的问答入口,即可解决多种问题,这使得用户可以在一个地方就能完成所有的任务。 有效分发业务问题:AI助手可以根据用户的需求和工具的定位,自动对
用、监管有力的制度,并加强对专项资金的监督和管理。严格控制专项资金的流向和使用范围,严禁有过度功能的行为,坚决杜绝虚假、虚报和恶意投资,建立完善的监督管理制度,加强随时的监督和核查,确保专项资金使用的规范化、严格化、透明化、便结算。”问题:在福田区社会建设专项资金的使用过程中,如
SearchTool()); } 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过setMaxIterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-
通过基模型训练出行业大模型和提示词写作的最佳实践,您将深入掌握行业模型的定制化流程与高效提示词构建方法,确保在实际应用中充分发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 从基模型训练出行业大模型 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API的详细介绍,您
全部 数据工程工具链 模型开发工具链 应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不
builder().systemPrompt(customSystemPrompt).build()) .build(); 优化工具描述 工具依赖的信息,可以通过其他工具获取时,增加关联关系提示: @AgentTool(toolId = "query_reimbursement_limit"
-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 表3 请求Body参数 参数 是否必选 参数类型 描述 data 是 List<String> 待统计Token数的字符串。List长度必须为奇数。
"A01"} 同样的,可以通过AgentSession的status判断此时是否需要调用工具,如果需要调用工具,可以从currentAction中获取需要调用的工具信息。 当提交了工具调用结果后,第三次printPlan打印的结果为: 用户: 定个2点-4点的会议 助手: 好的,请问您想预订哪一个会议室?
运行结果示例: 助手: 您的语文成绩是56分。 - 步骤1: 思考:好的,我需要调用 query_score 工具来查询您的成绩。首先,我将查询您的数学成绩。 行动:使用工具[query_score],传入参数{"arg": "数学"} 工具返回:你的数学的成绩是55分
从agentSession中取出要调用的工具 final AgentAction currentAction = agentSession.getCurrentAction(); log.info("Agent的状态为{},不为{},所以需要调用工具,调用的工具为{},入参为{}"
召回任何工具,终止后续流程。 阈值:指工具召回的相关性得分的阈值。阈值越高,召回工具的数量越少,但对召回工具的准确性要求更高。 多轮改写模型:对用户的问题进行多次改写,以增加召回内容的多样性。 检索工具数量:指在处理用户问题时,会检索出相关性最高的前N个工具。 历史信息处理策略 设置处理和利用用户历史对话信息的策略。
每个Token代表模型处理和生成文本的基本单位,它可以是一个单词、字符或字符的片段。模型的输入和输出都会被转换成Token,并根据模型的概率分布进行采样或计算。训练服务的费用按实际消耗的Token数量计算,即实际消耗的Token数量乘以Token的单价。为了帮助用户更好地管理和优化