检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型的自定义镜像制作流程 在Notebook中通过镜像保存功能制作自定义镜像用于推理 在Notebook中通过Dockerfile从0制作自定义镜像用于推理 在ECS中通过Dockerfile从0制作自定义镜像用于推理 父主题: 制作自定义镜像用于ModelArts Standard
(https://github.com/AUTOMATIC1111/stable-diffusion-webui)。 如果是基于其他开源,需要附带开源代码仓地址。 - 具体使用库 例如: 使用了哪个pipeline (例如lpw_stable_diffusion.py)。 使用了哪个huggingface的模型
peft版本升级到0.12.0 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
peft版本升级到0.12.0 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
专属资源池类型归一:不再区分训练、推理专属资源池。如果业务允许,您可以在一个专属资源池中同时跑训练和推理的Workload。同时,也可以通过“设置作业类型”来开启/关闭专属资源池对特定作业类型的支持。 自助专属池网络打通:可以在ModelArts管理控制台自行创建和管理专属资源池所属
前支持“按节点比例”和“按实例数量”两种滚动方式。 按节点比例:每批次驱动升级的实例数量为“节点比例*资源池实例总数”。 按实例数量:可以设置每批次驱动升级的实例数量。 对于不同的升级方式,滚动升级选择实例的策略会不同: 如果升级方式为安全升级,则根据滚动节点数量选择无业务的节点,隔离节点并滚动升级。
问题4:Error waiting on exit barrier错误 错误截图: 报错原因:多线程退出各个节点间超时时间默认为300s,时间设置过短。 解决措施: 修改容器内torch/distributed/elastic/agent/server/api.py文件参数: vim
制作自定义镜像用于创建Notebook Notebook的自定义镜像制作方法 在ECS上构建自定义镜像并在Notebook中使用 在Notebook中通过Dockerfile从0制作自定义镜像 在Notebook中通过镜像保存功能制作自定义镜像 父主题: 制作自定义镜像用于ModelArts
模型基本信息参数说明 参数名称 说明 名称 模型名称。支持1~64位可见字符(含中文),名称可以包含字母、中文、数字、中划线、下划线。 版本 设置所创建模型的版本。第一次导入时,默认为0.0.1。 说明: 模型创建完成后,可以通过创建新版本,导入不同的元模型进行调优。 描述 模型的简要描述。
规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b SEQ_LEN=4096 TP(tensor model
ain.py”。 超参 当资源规格为单机多卡时,需要指定超参world_size和rank。 当资源规格为多机时(即实例数大于 1),无需设置超参world_size和rank,超参会由平台自动注入。 方式二:使用自定义镜像功能,通过torch.distributed.launch命令启动训练作业。
数据源”,将OBS中的数据重新同步至ModelArts中。 检查OBS的访问权限 如果OBS桶的访问权限设置无法满足训练要求时,将会出现训练失败。请排查如下几个OBS的权限设置。 当前账号具备OBS桶的读写权限(桶ACLs) 进入OBS管理控制台,选择当前自动学习项目使用的OBS桶,单击桶名称进入概览页。
Standard专属资源池 ModelArts支持使用ECS创建专属资源池吗? 在ModelArts中1个节点的专属资源池,能否部署多个服务? 在ModelArts中公共资源池和专属资源池的区别是什么? ModelArts中的作业为什么一直处于等待中? ModelArts控制台为什么能看到创建失败被删除的专属资源池?
peft版本升级到0.12.0 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
peft版本升级到0.12.0 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址 1 llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
total_count Integer 不分页的情况下,符合查询条件的总服务数量。 count Integer 当前查询结果的服务数量,不设置offset、limit查询参数时,count与total相同。 services service结构数组 查询到的服务集合。 表3 service结构
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数; tensor_parallel_size是使用的卡数;