检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
在统一身份认证服务页面的左侧导航选择“权限管理 > 权限”,单击右上角的“创建自定义策略”,需要设置两条策略。 策略1:设置查看Notebook所有实例,如图1所示,单击“确定”。 “策略名称”:设置自定义策略名称,例如:查看Notebook所有实例。 “策略配置方式”:选择可视化视图。
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
Turbo存储加速的具体方案请查看: 面向AI场景使用OBS+SFS Turbo的存储加速实践。 设置训练存储加速 当完成上传数据至OBS并预热到SFS Turbo中步骤后,在ModelArts Standard中创建训练作业时,设置训练“SFS Turbo”,在“文件系统”中选择SFS Turbo实例名
total_count Integer 不分页的情况下,符合查询条件的总服务数量。 count Integer 当前查询结果的服务数量,不设置offset、limit查询参数时,count与total相同。 services service结构数组 查询到的服务集合。 表3 service结构
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改
911版本仅是使用run_type来指定训练的类型,只能区分 预训练、全参微调和lora微调但实际上预训练和sft是训练的不同阶段,全参、lora是训练参数设置方式。为了更加明确的区分不同策略,以及和llama-factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括:
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
lu、ceval。 service_url:成功部署推理服务后的服务预测地址,示例:http://${docker_ip}:8080/generate。此处的${docker_ip}替换为宿主机实际的IP地址,端口号8080来自前面配置的服务端口。 few_shot:开启少量样本
7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 镜像地址:swr.{region}.myhuaweicloud.com/aip/pytorch_1_8:train-pytorch_1.8.0-cuda_10
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
(此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改。指定的输入数据集中数据的总数量。更换数据集时,需要修改。
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改
表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 SN 1200 必须修改
911版本仅是使用run_type来指定训练的类型,只能区分 预训练、全参微调和lora微调但实际上预训练和sft是训练的不同阶段,全参、lora是训练参数设置方式。为了更加明确的区分不同策略,以及和llama-factory对齐,6.3.912版本调整以下参数: 新增 STAGE,表示训练的阶段,可以选择的参数包括:
在部署服务详情中单击“调用指南”,第二行的API接口公网地址即为APP认证调用地址,展开后即可看到AppCode值。 图5 调用指南 在postman调试预测采用AppCode认证: 请求POST URL填APP认证调用地址 请求头Headers中KEY参数为X-Apig-App
911版本仅是使用run_type来指定训练的类型,只能区分预训练、全参微调和lora微调但实际上预训练和sft是训练的不同阶段,全参、lora是训练参数设置方式。为了更加明确的区分不同策略,以及和llama-factory对齐,6.3.912版本调整以下参数: 新增STAGE,表示训练的阶段,可以选择的参数包括:
<cfgs_yaml_file> <model_name> <exp_name> <cfgs_yaml_file>:精度测试配置的yaml文件地址,指代码目录中accuracy_cfgs.yaml相对或绝对路径 <model_name>:训练模型名,如qwen2.5-7b <exp_
False:训练数据保存在参数obs_path指定的位置中; True:训练数据保存在notebook中,由local_path指定。 obs_path:obs地址。根据is_local_source值的变化,有不同的含义。 is_local_source=False,此时是必选参数,代表训练数据位置,支持文件夹和压缩文件。