检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel size)流水线模型并行策略,具体详细参数配置如表2所示。 步骤三 启动训练脚本
架的分布式训练和调测,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 使用自定义镜像创建训练作业时,镜像大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小的一半。镜像过大会直接影响训练作业的启动时间。ModelArts公共资源池的容器引擎空间
由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel size)流水线模型并行策略,具体详细参数配置如表2所示。 Step3 启动训练脚本
由于模型中LoRA微调训练存在已知的精度问题,因此不支持TP(tensor model parallel size)张量模型并行策略,推荐使用PP(pipeline model parallel size)流水线模型并行策略,具体详细参数配置如表2所示。 步骤三 启动训练脚本
议。 图6 环境变量分析 表2 当前支持的环境变量 环境变量名称 释义 ASCEND_GLOBAL_LOG_LEVEL plog日志级别,推荐设置为2(warning级别),低级别日志等级会导致cpu侧性能问题。 HCCL_RDMA_TC HCCL通信相关环境变量,通常无需设置该
在云服务详情页面,单击节点页签的选择“前往控制台”跳转到云服务器控制台。 在云服务器控制台的节点基本信息页面,单击右上角“远程登录”选择登录方式远程登录云服务器节点。推荐使用CloudShell登录,直接页面单击“CloudShell登录”跳转到CloudShell页面,输入专属资源池信息登录服务器。具体步
DatasetVersionConfig 表4 DatasetVersionConfig 属性 描述 是否必填 数据类型 version_name 数据集版本名称,推荐使用类似V001的格式,不填则默认从V001往上递增。 否 str或者Placeholder version_format 版本格式,默认
ckerhub官网查找即可。 构建流程:安装所需的apt包、驱动,配置ma-user用户、导入conda环境、配置Notebook依赖。 推荐使用Dockerfile的方式构建镜像。这样既满足dockerfile可追溯及构建归档的需求,也保证镜像内容无冗余和残留。 每层构建的时候
该指标用于统计k8s空间的使用率 百分比(Percent) ≥0 连续2个周期原始值 > 90% 紧急 请及时检查,防止磁盘写满影响业务。推荐清理计算节点无效数据。 容器空间的总量 ma_node_container_space_capacity_megabytes 该指标用于统计容器空间的总容量。
工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS Turbo的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS Turbo的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
工具查看 nerdctl --namespace k8s.io image list 步骤三 构建ModelArts Lite训练镜像 获取模型软件包,并上传到机器SFS Turbo的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-6
${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径,推荐使用human-eval-v2-20210705.jsonl数据集,数据集可从https://github.com/openai/huma
${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --dataset:数据集路径,推荐使用human-eval-v2-20210705.jsonl数据集,数据集可从https://github.com/openai/huma
ckerhub官网查找即可。 构建流程:安装所需的apt包、驱动,配置ma-user用户、导入conda环境、配置Notebook依赖。 推荐使用Dockerfile的方式构建镜像。这样既满足dockerfile可追溯及构建归档的需求,也保证镜像内容无冗余和残留。 每层构建的时候
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")
您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个模型移动到GPU或CPU。例如,要将模型保存在CPU上。 quantized_model.save_pretrained("CodeLlama-34b-hf")