检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查看应用详情 新建应用后,您可以在ModelArts Pro控制台查看应用详情,包括应用开发的配置信息和应用资产。 前提条件 已在文字识别套件控制台选择预置工作流新建应用,详情请见新建应用。 进入应用详情页 登录ModelArts Pro管理控制台,单击“文字识别”套件卡片的“进入套件”。
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“云状识别工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,等
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“刹车盘识别工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,
详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
在“模型评估”页面,您可以针对当前版本的模型进行整体评估。 “整体评估”左侧显示当前模型的标签名称和评估参数值,包括“精准率”、“召回率”、“F1值”。 “整体评估”右侧显示当前模型和其他版本模型的评估参数值柱状图,包括“精准率”、“召回率”、“F1值”。您可以在上方单击选择“对比版本”。
签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显示正确标签为“1”的样本信息,包括样本的正确标签和预测标签。 图2 详细评估
参数 说明 服务名称 待部署的服务名称,单击可修改服务默认服务名称。 描述 待部署服务的简要说明。 资源池 用于服务部署的资源池和资源类型,可选“公共资源池”和“专属资源池”。 “公共资源池”:提供公共的大规模计算集群,资源按作业隔离。您可以按需选择不同的资源类型。 “专属资源池”:
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在“工业智能体控制台>工业
选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有一个默认存储位置。如果需要修改数据集存储位置,请单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
签所对应样本的正确标签和预测标签,您可以对比正确标签和预测标签,判断当前模型对该样本的预测是否正确。 例如搜索框内输入标签“1”,下方会显示正确标签为“1”的样本中,预测正确的样本数在验证集中的占比。右侧显示正确标签为“1”的样本信息,包括样本的正确标签和预测标签。 图2 详细评估
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
景的文字识别。 本章节提供一个身份证样例,帮助您快速熟悉使用文字识别套件中的通用单模板工作流开发应用的过程。通过上传模板图片、框选参照字段和识别区,自动训练并生成文字识别模型,并将生成的模型部署为在线服务。部署完成后,用户可通过在线服务识别身份证模板中的文字。 首先,请仔细阅读准
模型训练完成后,可在“应用开发>评估”页面评估分类器和模板,详情请见步骤8:评估模板。 步骤8:评估模板 在“应用开发>评估”页面包含分类器评估和模板评估 ,其中分类器评估用于识别模板类型,模板评估用于识别对应模板中的文字。 分类器评估 默认进入“本地上传”页签,打开“分类模式”和“动态识别”开关。 单击“
选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有一个默认存储位置。如果需要修改数据集存储位置,请单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。
选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有一个默认存储位置。如果需要修改数据集存储位置,请单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。