检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如:
在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。 图1 立即体验 您可以选择希望体验的盘古大模型,单击“申请体验”,填写手机、邮箱和邀请码,单击“下一步”,提交体验盘古大模型的申请。 图2 申请体验-1 图3 申请体验-2 父主题: 体验盘古大模型功能
在服务“总览”页面,单击“立即体验”,平台将跳转至盘古大模型体验申请页面。 图1 立即体验 您可以选择希望体验的盘古大模型,单击“申请体验”,填写手机、邮箱和邀请码,单击“下一步”,提交体验盘古大模型的申请。 图2 申请体验-1 图3 申请体验-2 父主题: 体验盘古大模型功能
例如,在构造泛化问题的任务中,需要基于原问题改写为相同含义的问题,而不是生成相似的问题。当提示词使用“请生成10个跟“手机银行怎么转账”相似的问题”时,模型会认为实体/关键词/场景一致则是相似(在这个例子里实体为手机银行),而不是任务需要的语义级别的相同含义,所以输出内容会发散。 父主题: 进阶技巧
>=80% 绿色 可用 >=40% 黄色 预警,需要优化数据 <40% 红色 告警,需要优化数据 (可选)当“我的数据集”的OBS数据发生变更时,可以单击右上角“检测”按钮重新校验数据集,也可以在“我的数据集”页签中,单击操作栏中的“更多 > 检测”,重新校验数据集。历史存量未校验过的数据集也可以进行重新校验。
当部署一个实例时,占用0.125个推理单元。 32K版本: 当部署一个实例时,占用0.125个推理单元。 128K版本: 当部署一个实例时,占用1个推理单元。 盘古-NLP-N2系列模型 当部署一个实例时,占用0.5个推理单元。 盘古-NLP-N4系列模型 当部署一个实例时,占用1个推理单元。
在数据配置中,选择训练模型所需的数据集。 图2 数据配置 完成训练任务基本信息。设置模型的名称、描述以及订阅提醒。 设置订阅提醒后,模型训练和部署过程产生的事件可以通过手机或邮箱发送给用户。 图3 基本信息 单击“立即创建”,创建自监督训练任务。 自监督微调训练参数说明 不同模型训练参数默认值存在一定差异,请以前端页面展示的默认值为准。
大模型的计量单位token指的是什么 令牌(Token)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。 例如,在英文中,有些组合单词会根据语义拆分,如overweight会被设计为2个to
获取Token消耗规则 每个Token代表模型处理和生成文本的基本单位,它可以是一个单词、字符或字符的片段。模型的输入和输出都会被转换成Token,并根据模型的概率分布进行采样或计算。训练服务的费用按实际消耗的Token数量计算,即实际消耗的Token数量乘以Token的单价。为
本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成token,然后根据模型的概率分布进行采样或计算。不同系列模型在读取中文和英文内容时,字符长度转换为token长度的转换比如下。以N1为例,盘古模型1token≈0.75个英文单词,1token≈1
型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出,以供下游操作,从而满足该场景下客户需求。 金融场景下,NL2JSON能力可以有效消除用户语义歧义性,提高数据处理的灵活
创建数据集清洗任务 数据集创建完成后,可以使用数据清洗功能,对异常数据进行清理,或进行数据转换、过滤和去重等操作。 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据清洗”,单击界面右上角“创建任务”。 图1 数据清洗 依据需要清洗的数据类型,选择对应的数据集和数据
第三轮用户反馈信息, “会议室更换为 AgentSession session3th = run(sessionId, "会议室更换为 // 第三轮回复:” A02会议室在今天下午2点到4点已经被使用了,无法预定。您是否需要更换其他时间或者其他会议室?”
阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转 简体转换成繁体或者繁体转换成简体。 去除不可见字符 移除文本中不可见字符,如U+0000-U+001F。 去除表情符
转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊
请检查调用API时是否有传入认证鉴权信息。 PANGU.0031 Inner service exception. 服务内部异常。 请联系服务技术支持协助解决。 PANGU.3305 call cal tokens failed 获取token错误。 请检查调用API时使用的token是否完整,是否存在错误。
据。 图2 从训练数据拆分 完成训练任务基本信息。设置模型的名称、描述以及订阅提醒。 设置订阅提醒后,模型训练和部署过程产生的事件可以通过手机或邮箱发送给用户。 图3 基本信息 单击“立即创建”,创建有监督微调训练任务。 有监督微调(全量微调)训练参数说明 不同模型训练参数默认值
新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。向量存储还可以支持多
新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。 Vector向量存储:是一种将数据转换为数学表示的方法,它可以度量数据之间的关系和相似度。向量存储可以根据不同的词向量模型进行初始化、更新、查找和清理操作。向量存储还可以支持多
这个临时响应用来通知客户端,它的部分请求已经被服务器接收,且仍未被拒绝。 101 Switching Protocols 切换协议。只能切换到更高级的协议。 例如,切换到HTTPS的新版本协议。 200 OK 服务器已成功处理了请求。 201 Created 创建类的请求完全成功。 202