检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
导出任务ID。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数 参数类型 描述 create_time Long 任务创建时间。 error_code String 错误码。 error_msg String 错误信息。 export_format Integer
请求服务器删除指定资源,如删除对象等。 HEAD 请求服务器资源头部。 PATCH 请求服务器更新资源的部分内容。 当资源不存在的时候,PATCH可能会去创建一个新的资源。 在获取用户Token的URI部分,您可以看到其请求方法为“POST”,则其请求为: POST https://iam.cn-north-1
spec_code String 训练作业资源规格。 gpu_type String 资源规格gpu的类型。 create_time Long 训练作业参数创建时间 。 cpu String 资源规格CPU内存。 gpu_num Integer 资源规格gpu的个数。 core String 资源规格的核数。
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox
Turbo的存储加速实践。 设置训练存储加速 当完成上传数据至OBS并预热到SFS Turbo中步骤后,在ModelArts Standard中创建训练作业时,设置训练“SFS Turbo”,在“文件系统”中选择SFS Turbo实例名称,并指定“存储位置”和“云上挂载路径”。系统会在
reload ckpt的代码,使能读取前一次训练保存的预训练模型。 在ModelArts训练中实现增量训练,建议使用“训练输出”功能。 在创建训练作业时,设置训练“输出”参数为“train_url”,在指定的训练输出的数据存储位置中保存Checkpoint,且“预下载至本地目录”
T_S=600 # PYTORCH_NPU_ALLOC_CONF优先设置为expandable_segments:True # 如果有涉及虚拟显存相关的报错,可设置为expandable_segments:False export PYTORCH_NPU_ALLOC_CONF=e
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox
*720或1920*1080。 提前准备音频文件audio,支持'wav', 'mp3', 'mp4'格式。 在代码根目录Wav2lip下创建test_wav2lip.sh, 复制以下内容粘贴至test_wav2lip.sh中,参数参照下方说明进行配置。 #!/bin/bash start_time=$(date
odels/InstructBLIP/instruct_blip_vicuna13b_trimmed.pth 在根目录LLaMA-VID下创建model_zoo路径,下载的文件根据以下目录结构进行存放 LLaMA-VID ├── llamavid ├── scripts ├── work_dirs
极大延长。 --accuracy 指定模型精度,只支持fp16和fp32。 string 否 fp16 - Python API 导入包并创建tailor对象。 from tailor.tailor import Tailor onnx_model_path = "./resnet50-v2-7
*720或1920*1080。 提前准备音频文件audio,支持'wav', 'mp3', 'mp4'格式。 在代码根目录Wav2lip下创建test_wav2lip.sh, 复制以下内容粘贴至test_wav2lip.sh中,参数参照下方说明进行配置。 #!/bin/bash start_time=$(date
--datasets mmlu_gen ceval_gen -w ${output_path} output_path: 要保存的结果路径。 (可选)创建新conda环境,安装vllm和opencompass。执行完之后,在 opencompass/configs/models/vllm/vllm_ppl
mmlu_gen ceval_gen --debug -w ${output_path} output_path: 要保存的结果路径。 (可选)创建新conda环境,安装vllm和opencompass。执行完之后,在 opencompass/configs/models/vllm/vllm_ppl
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox
建议手动下载所需的权重文件,保证文件权限能被ma-user用户使用和修改,在/home/ma-user/OpenSora1.2/目录下进行操作。 创建文件夹存放不同的权重文件。 mkdir weights 下载 OpenSora-VAE-v1.2权重,将下载好的权重放在 ./weights
mmlu_gen ceval_gen --debug -w ${output_path} output_path: 要保存的结果路径。 (可选)创建新conda环境,安装vllm和opencompass。执行完之后,在 opencompass/configs/models/vllm/vllm_ppl
mmlu_gen ceval_gen --debug -w ${output_path} output_path: 要保存的结果路径。 (可选)创建新conda环境,安装vllm和opencompass。执行完之后,在 opencompass/configs/models/vllm/vllm_ppl
mmlu_gen ceval_gen --debug -w ${output_path} output_path: 要保存的结果路径。 (可选)创建新conda环境,安装vllm和opencompass。执行完之后,在 opencompass/configs/models/vllm/vllm_ppl
装相关依赖。插件代码包获取路径参见表2。 mkdir -p /home/ma-user/stable_diffusers_1.5 #创建stable_diffusers_1.5目录 cd /home/ma-user/stable_diffusers_1.5