检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据集版本名称。 workspace_id String 工作空间ID。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表15 Event 参数 参数类型 描述 create_time Long 事件创建时间。 description String 描述。 elapsed_time
909-xxx.zip。 准备镜像 准备推理模型适用的容器镜像。 准备Notebook 本案例在Notebook上部署推理服务进行调试,因此需要创建Notebook。 部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。
NVIDIA的驱动程序是一个二进制文件,需使用系统中的libelf库(在elfutils-libelf-devel开发包)中。它提供了一组C函数,用于读取、修改和创建ELF文件,而NVIDIA驱动程序需要使用这些函数来解析当前正在运行的内核和其他相关信息。 安装过程中的提示均选OK或YES,安装好后执行
计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格为空数据,表示当前环境无公共资源。建议使用专属资源池,或者联系系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如
计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格为空数据,表示当前环境无公共资源。建议使用专属资源池,或者联系系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如
计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。如果公共资源池下规格为空数据,表示当前环境无公共资源。建议使用专属资源池,或者联系系统管理员创建公共资源池。 计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如
在“访问授权”页面,选择需要授权的“授权对象类型”,选择新增委托及其对应的权限“普通用户”,并勾选“我已经详细阅读并同意《ModelArts服务声明》”,然后单击“创建”。 完成配置后,在ModelArts控制台的权限管理列表,可查看到此账号的委托配置信息。 步骤2:订阅模型 “商超商品识别”的模型共享在AI
4机8卡Vnt1 10 07:08:44 表3 训练各步骤性能参考 步骤 说明 预计时长 镜像下载 首次下载镜像的时间(25G)。 8分钟 资源调度 点创建训练任务开始到变成运行中的时间(资源充足、镜像已缓存)。 20秒 训练列表页打开 已有50条训练作业,单击训练模块后的时间。 6秒 日志加载
ee/2024-03-06。 在宿主机上创建一个空目录/home/temp,将下载的模型包存放在宿主机/home/temp/moondream2目录下,修改目录权限后,复制到容器中。 mkdir /home/temp #创建一个空目录,将下载的模型包存放在宿主机/h
7-aarch64-snt3p IMAGE_MINDSPORE_ASCEND_310P_DESC Ascend_snt3p 是 是 训练作业 创建训练作业时,训练支持的AI引擎及对应版本如下所示。 预置引擎命名格式如下: <训练引擎名称_版本号>-[cpu | <cuda_版本号 |
分页列表的起始页,默认为0。 请求参数 无 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 create_time Long 任务创建时间。 error_code String 错误码。 error_msg String 错误信息。 export_format Integer
PYTORCH_NPU_ALLOC_CONF=expandable_segments:False;llava多卡启动时需要关闭虚拟内存扩展;开启时可能提升模型性能。允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。 --image-input-type:图像输入模式,pixel_values
镜像里面实际提供的是http,就会遇到上述错误。反之,如果您选择的是http,但镜像里面实际提供的是https,也会遇到类似错误。 您可以创建一个新的模型版本,选择正确的协议(http或者https),重新部署在线服务或更新已有在线服务。 请求预测时间过长 报错:{"error_code":
0-ubuntu18.04 CPU运筹优化求解器开发基础镜像,预置cylp,cbcpy,ortools及cplex CPU 是 是 训练作业 创建训练作业时,训练支持的AI引擎及对应版本如下所示。 预置引擎命名格式如下: <训练引擎名称_版本号>-[cpu | <cuda_版本号 |
(如CPU规格,GPU规格)由表3 predictor configs结构决定。 部署在线服务Predictor需要线上服务端根据AI引擎创建容器,较耗时;本地Predictor部署较快,最长耗时10s,可用以测试模型,不建议进行模型的工业应用。 当前版本支持部署本地服务Pred
--vllm_model=${model_path} 参数说明: max_workers:请求的最大线程数,默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:llama2-13b-chat-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。
--deploy_method=vllm 参数说明: max_workers:请求的最大线程数,默认为1。 service_name:服务名称,保存评测结果时创建目录,示例为:qwen-14b-test。 eval_dataset:评测使用的评测集(枚举值),目前仅支持mmlu、ceval。 ser
910-xxx.zip。 准备镜像 准备推理模型适用的容器镜像。 准备Notebook 本案例在Notebook上部署推理服务进行调试,因此需要创建Notebook。 部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。
在“访问授权”页面,选择需要授权的“授权对象类型”,选择新增委托及其对应的权限“普通用户”,并勾选“我已经详细阅读并同意《ModelArts服务声明》”,然后单击“创建”。 图1 配置委托访问授权 完成配置后,在ModelArts控制台的权限管理列表,可查看到此账号的委托配置信息。 图2 查看委托配置信息
} 9223372036854578794 ... 步骤四:安装Prometheus 在“/usr/local/prometheus”目录创建配置文件prometheus.yml内容如下: global: scrape_interval: 15s # 采集间隔 scrape_configs: