检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标注声音分类数据 项目创建完成后,将会自动跳转至新版自动学习页面,并开始运行,当数据标注节点的状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 音频标注 在新版自动学习页面单击“实例详情”按钮,
计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
ts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是专属资源池的Ascend芯片。 场景描述 目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用Ascend规格资源运行训练作业。 ubuntu-18.04 cann-6.3.RC2 (商用版本)
对话问答、长文本推理、代码生成 中文、英文 ChatGLM3 文本生成 对话问答、数学推理、代码生成 中文、英文 百川2 文本生成 对话问答、数学推理、代码生成、翻译 中文、英文 Llama2 文本生成 对话问答、智能创作、文本摘要 英文 Llama3 文本生成 对话问答、智能创作、文本摘要 英文 Llama3
当训练过程中触发了自动重启,则系统会记录重启信息,在训练作业详情页可以查看故障恢复详情,具体请参见训练作业重调度。 开启无条件自动重启 开启无条件自动重启有2种方式:控制台设置或API接口设置。 控制台设置 在创建训练作业页面,开启“自动重启”开关,并勾选“无条件自动重启”,开启无条
计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小
准备声音分类数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 声音分类的数据要求 音频只支持16bit的WAV格式。支持WAV的所有子格式。 单条音频时长应大于1s,大小不能超过4MB。 适当
准备文本分类数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 数据集要求 文件格式要求为txt或者csv,文件大小不能超过8MB。 以换行符作为分隔符,每行数据代表一个标注对象。 文本分类目前只支持中文。
计算节点个数:默认为1,输入值必须是1-5之间的整数。 是否自动停止:启用该参数并设置时间后,服务将在指定时间后自动停止。如果不启用此参数,在线服务将一直运行,同时一直收费,自动停止功能可以帮您避免产生不必要的费用。默认开启自动停止功能,且默认值为“1小时后”。 目前支持设置为“1小
0”更换为“NVIDIA 515+CUDA 11.7”。 操作步骤 卸载原有版本的NVIDIA和CUDA。 查看使用apt包管理方式安装的nvidia软件包, 执行如下命令实现查看和卸载。 dpkg -l | grep nvidia dpkg -l | grep cuda sudo apt-get
可以直接使用安装,Conda源需要多一步配置。 本章节介绍如何在Notebook开发环境中配置Conda源。 配置Conda源 Conda软件已经预置在镜像中,具体操作可以参见https://mirror.tuna.tsinghua.edu.cn/help/anaconda/。 常用Conda命令
ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。 在您需要的自动学习项
标注文本分类数据 项目创建完成后,将会自动跳转至新版自动学习页面,并开始运行,当数据标注节点的状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 双击“数据标注”节点,单击实例详情按钮,打开数据标注页面。
备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用CPU/GPU规格资源运行训练任务。 ubuntu-18.04 cuda-11.1 python-3.7.13 pytorch-1.8.1 操作流程 使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示:
获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。 在您需要的自动学习项