检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
企业项目 创建开发环境实例 POST /v1/{project_id}/notebooks modelarts:notebook:create ecs:serverKeypairs:create swr:repository:getNamespace swr:repository:listNamespace
不分页的情况下符合查询条件的总数量。 total_count Integer 当前查询结果的数量,不设置offset、limit查询参数时,count与total相同。 engine_runtimes Array of EngineAndRuntimesResponse objects 引擎运行环境。
描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String
描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String
参考。 训练流程简述 相比于DP,DDP能够启动多进程进行运算,从而大幅度提升计算资源的利用率。可以基于torch.distributed实现真正的分布式计算,具体的原理此处不再赘述。大致的流程如下: 初始化进程组。 创建分布式并行模型,每个进程都会有相同的模型和参数。 创建数据
在创建并使用的工作空间,以实际取值为准。 model_type 否 String 模型类型,查询属于该类型的模型列表。model_type与not_model_type为互斥关系,不能同时存在。可选值为TensorFlow、PyTorch、MindSpore、Image、Custom、Template。
除按小时结算的训练作业资源,但是8:00~9:00期间产生的费用,通常会在10:00左右才进行扣费。 对于在线/批量/边缘服务,因资源ID与账单中上报的资源ID不一致,所以需通过如下方法查询账单停止计费: 使用公共资源池创建的在线/批量/边缘服务,通过此方式停止服务后,即可停止计费。
ts.6786。更新密钥对具体操作请参见修改Notebook SSH远程连接配置。具体的错误信息提示:ModelArts.6789: 在ECS密钥对管理中找不到指定的ssh密钥对xxx,请更新密钥对并重试。 父主题: 管理Notebook实例
ts.6786。更新密钥对具体操作请参见修改Notebook SSH远程连接配置。具体的错误信息提示:ModelArts.6789: 在ECS密钥对管理中找不到指定的ssh密钥对xxx,请更新密钥对并重试。 父主题: 典型场景配置实践
描述 sfsId String SFS Turbo的ID。 name String SFS Turbo的名称。 status String 与SFS Turbo的连接状态信息。可选值如下: Active:SFS连通状态正常 Abnormal:SFS连通状态异常 ipAddr String
训练作业中存在2个代码目录,一个是从OBS上传到ModelArts Standard训练容器中的代码目录OBS_CODE_DIR,一个是后续构建新镜像步骤ECS中构建新镜像中镜像的代码目录CODE_DIR。修改代码如图1。 图1 修改区分训练作业中2个代码目录 使用环境变量SAVE_PATH重新覆
注册自定义镜像 功能介绍 将用户自定义的镜像注册到ModelArts镜像管理。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/images
在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 问题现象 在线服务启动后,当在线服务进入到“运行中”状态后,进行预测,预测请求发出后,收到的响应不符合预期,无法判断是不是模型的问题导致的不符合预期。 原因分析 在线服务启动后,ModelArts提供两种方式的预测:
训练作业中存在2个代码目录,一个是从OBS上传到ModelArts Standard训练容器中的代码目录OBS_CODE_DIR,一个是后续构建新镜像步骤ECS中构建新镜像(二选一)中镜像的代码目录CODE_DIR。修改代码如图1。 图1 修改区分训练作业中2个代码目录 使用环境变量SAVE_PA
>]-<py_版本号>-<操作系统名称_版本号>-< x86_64 | aarch64> 表4 训练作业支持的AI引擎 工作环境 系统架构 系统版本 AI引擎与版本 支持的cuda或Ascend版本 TensorFlow x86_64 Ubuntu18.04 tensorflow_2.1.0-cuda_10
>]-<py_版本号>-<操作系统名称_版本号>-< x86_64 | aarch64> 表4 训练作业支持的AI引擎 工作环境 系统架构 系统版本 AI引擎与版本 支持的cuda或Ascend版本 TensorFlow x86_64 Ubuntu18.04 tensorflow_2.1.0-cuda_10
单击“注册镜像”。请将完整的SWR地址复制到这里即可,或单击可直接从SWR选择自有镜像进行注册。 “架构”和“类型”根据实际情况选择,与镜像源保持一致。 创建Notebook并使用 镜像注册成功后,即可在ModelArts控制台的“开发环境 > Notebook”页面,创建开发环境时选择该自定义镜像。
docker exec -it ${container_name} bash Step4 构建与代码解耦的镜像和容器环境 Step3 构建标准镜像和容器环境 和 Step4 构建与代码解耦的镜像和容器环境 都是搭建容器环境,任选其中一个即可。 一、启动镜像 启动容器镜像,训练需
如何删除预置镜像中不需要的工具 预置的基础镜像中存在cpp、gcc等调试/编译工具,如果您不需要使用这些工具,可以通过运行脚本删除。 创建一个run.sh脚本文件,文件中的代码内容如下。然后在容器中执行sh run.sh命令运行脚本。 #!/bin/bash delete_sniff_compiler()
步骤中会提示 |── Llama2-70B |── models #原始权重与tokenizer目录,需要用户手动创建,后续操作步骤中会提示 |── Llama2-70B |── training_data