内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1554
    1
  • 深度学习 - 深度学习 (人工神经网络的研究的概念)

    文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)

    作者: 简简单单Onlinezuozuo
    发表时间: 2022-02-18 15:08:32
    608
    0
  • 时序预测算法初探:基于机器学习的时序预测算法(1)

    较多时我们希望能够实时、自动的预测未来任意时间段的用户数;2. 当前平均用户的资源占比代表了当前的话务模型,最好需要一种能够预测未来话务模型变化的趋势的算法,从而能够更加精准的预测话务模型的变化趋势。这就要求我们的容量评估算法最好有一种基于时序预测的策略,来帮助我们更好的进行容量

    作者: 技术火炬手
    发表时间: 2020-11-05 11:31:01
    5132
    0
  • 基于CNN+LSTM深度学习网络的时间序列预测matlab仿真

    MATLAB2022a   3.算法理论概述        时间序列预测是指利用历史数据来预测未来数据点或数据序列的任务。在时间序列分析中,数据点的顺序和时间间隔都是重要的信息。CNN+LSTM网络结合了卷积神经网络(CN

    作者: 简简单单做算法
    发表时间: 2024-03-01 12:53:24
    21
    0
  • 创建联邦预测作业

    创建联邦预测作业 企业A单击“联邦预测”——“批量预测”——“创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。

  • 深度学习入门,keras实现回归模型

    在本教程中,您将学习如何使用 Keras 和深度学习执行回归。 您将学习如何训练 Keras 神经网络进行回归和连续值预测,特别是在房价预测的背景下。 今天的帖子开始了关于深度学习、回归和连续值预测的 3 部分系列。 我们将在房价预测的背景下研究 Keras 回归预测: 第 1

    作者: AI浩
    发表时间: 2021-12-22 14:43:35
    1173
    0
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2441
    1
  • 机器学习案例(七):产品需求预测

    增加。如果想知道我们如何通过机器学习预测对产品的需求,那么这篇文章就是为您准备的。在本文中,我将引导完成使用 Python 进行机器学习的产品需求预测任务。 文章目录 一、数据集 二、产品需求预测(案例研究)

    作者: 川川菜鸟
    发表时间: 2022-09-24 15:28:25
    150
    0
  • 基于深度学习的石油炼化过程中的产品预测与市场需求

    在石油炼化过程中,准确预测产品的质量和市场需求对于生产计划和销售策略至关重要。传统的预测方法往往依赖于经验和统计模型,存在一定的局限性。而基于深度学习的产品预测方法可以通过学习大量的数据,自动提取特征并预测产品的质量和市场需求,从而实现更准确和高效的预测与决策。本文将介绍基于深度学习的产品预测

    作者: 皮牙子抓饭
    发表时间: 2023-07-10 09:04:55
    60
    0
  • 使用Python实现深度学习模型:用户行为预测与个性化服务

    head()) print(interactions.head()) 构建深度学习模型 我们将使用TensorFlow和Keras库来构建一个简单的深度学习模型。这个模型将根据用户的历史交互数据,预测用户对新项目的兴趣。 model/data_preprocessing.py import

    作者: Echo_Wish
    发表时间: 2024-07-24 08:15:12
    21
    0
  • 深度学习】天气数据预测农作物生长环境的系统设计与实现(预测+可视化大屏)

    @IgnoreAuth @PostMapping(value = "/login") public R login(String username, String password, String captcha, HttpServletRequest request) {

    作者: 小蔡coding
    发表时间: 2024-11-01 11:05:18
    1
    0
  • 机器学习案例(六):加密货币价格预测

    来丰厚的回报。比特币、狗狗币是当今流行的加密货币之一。如果你想知道如何通过机器学习预测任何加密货币的未来价格,这篇文章适合你。在本文中,我将引导你完成使用 Python 进行机器学习的加密货币价格预测任务。 文章目录 一、案例实践

    作者: 川川菜鸟
    发表时间: 2022-09-24 17:07:48
    118
    0
  • 自动学习里的预测分析如何使用

    哪位大佬可以出一个自动学习预测分析功能的使用教程,最好是以一个完整的案例来呈现,查看了操作指南里讲的并不详细,这个功能具体是预测什么的,需要上传什么样的数据去训练。

    作者: Granger_Chu
    4882
    2
  • 基于深度学习的石油炼化过程中的产品销售预测与优化

    模型构建与训练 在特征工程完成后,我们可以选择合适的深度学习算法来构建销售预测模型。常用的深度学习算法包括多层感知机(MLP)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。通过对历史数据进行训练,我们可以建立一个能够预测产品销售情况的深度学习模型。在训练过程中,我们需要将数据集划分

    作者: 皮牙子抓饭
    发表时间: 2023-07-17 09:10:09
    24
    0
  • 机器学习(八)监督学习之人体运动状态预测

    的标记过的用户姿态,两个文件的行数相同,相同行之间互相对应。 1)特征文件 人体的温度数据可以反映当前活动的剧烈程度,一般在静止状态时,体温趋于稳定在36.5度上下;当温度高于37度时,可能是进行短时间的剧烈运动,比如跑步和骑行。 在数据中有两个型号的加速度传感器,

    作者: 野猪佩奇996
    发表时间: 2022-01-22 15:57:59
    497
    0
  • 浅谈深度学习

    前言当今计算机科技领域中,深度学习是最具有影响力的技术之一。这篇文章将介绍深度学习是什么,它的应用领域,以及为什么它如此重要。简介深度学习是一种机器学习技术,它使用大量人工神经网络来模拟人类大脑的工作方式。这些神经网络可以自动从数据中学习模式,并根据这些模式进行预测和分类。深度学习技术已经在多

    作者: 运气男孩
    23
    3
  • 深度学习应用开发学习

    件不仅展示了人工智能的演进,也体现了其在系统性思维上的挑战。在机器学习领域,我学习了有监督学习、无监督学习、半监督学习和强化学习等概念。特别是强化学习,它通过奖励和惩罚机制进行学习,非常适合棋类游戏。而无监督学习中的聚类算法,让我意识到它在日常生活中的广泛应用,比如超市货架的商品

    作者: 黄生
    22
    0
  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 【IoT美学】深度学习:IoT场景下的AI应用与开发—AI智能销量预测

       2.训练区域物品销售量预测模型          3.评估区域物品销售量预测模型          4.应用区域物品销售量预测模型 四、运维反馈    

    作者: Devin
    发表时间: 2020-12-09 13:48:03
    2759
    0
  • 自动学习

    持图片分类、物体检测、预测分析、声音分类场景。可根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型。 图1 自动学习流程 ModelArts 的自动学习不止为入门级开发者使用设计,还提供了“自动学习白盒化”的能力,开放模型