内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之提前终止

    循环次数内没有进一步改善时,算法就会终止。此过程在算法中有更正式的说明。这种策略被称为提前终止(early stopping)。这可能是深度学习中最常用的正则化形式。它的流行主要是因为有效性和简单性。

    作者: 小强鼓掌
    325
    0
  • 深度学习之贝叶斯统计

    的已知知识表示成先验概率分布 (prior probability distribution),p(θ)(有时简单地称为 “先验”)。一般而言,机器学习实践者会选择一个相当宽泛的(即,高熵的)先验分布,反映在观测到任何数据前参数 θ 的高度不确定性。例如,我们可能会假设先验 θ 在有限区间中均匀分布。许多先验偏好于“更简单”

    作者: 小强鼓掌
    619
    1
  • 深度学习笔记之表示学习

    解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation learning)。学习到的表示往往比手动设计的表示表现得更好。并且它们只需最少的人工干预,就能让AI系统迅速适应新的任务。表示学习算法只需几分钟就可以为

    作者: 小强鼓掌
    854
    1
  • 深度学习入门》笔记 - 13

    52137365917.png) $f(x)=\frac{1}{1+e^{-x}}$函数在统计学文献中称为`logistic函数`,在机器学习文献中称为`sigmoid函数`。 ```python a=np.linspace(-10,10,100) plt.plot(a,1/(1+np

    作者: 黄生
    48
    1
  • 深度学习之Dropout启发

    Bagging。然而,这种参数共享策略不一定要基于包括和排除。原则上,任何一种随机的修改都是可接受的。在实践中,我们必须选择让神经网络能够学习对抗的修改类型。在理想情况下,我们也应该使用可以快速近似推断的模型族。我们可以认为由向量 µ 参数化的任何形式的修改,是对 µ 所有可能的值训练

    作者: 小强鼓掌
    544
    1
  • 深度学习模型轻量化

    硬件层加速。这个维度主要在AI硬件芯片层,目前有GPU、FPGA、ASIC等多种方案,各种TPU、NPU就是ASIC这种方案,通过专门为深度学习进行芯片定制,大大加速模型运行速度。

    作者: 可爱又积极
    1257
    4
  • 深度学习入门》笔记 - 18

    网络的目的是建立输入层与输出层之间的关系,进而利用建立的关系得到预测值。通过增加隐藏层,神经网络可以找到输入层与输出层之间较复杂的关系。深度学习是拥有多个隐藏层的神经网络,在神经网络中,我们通过正向传播算法得到预测值,并通过反向传播算法得到参数梯度,然后利用梯度下降法更新参数,使

    作者: 黄生
    22
    1
  • 深度学习入门》笔记 - 16

    层,这种关系无法表达。同时可以通过增加隐藏层的数量和每个隐藏层的节点数,来处理更加复杂的问题。拥有多个隐藏层的神经网络就可以实现深度学习。而数量越多,就需要更多的技巧来训练并发挥这些隐藏层的作用。

    作者: 黄生
    36
    4
  • 深度学习入门》笔记 - 11

    化`。 标准化后所有自变量的均值是0,方差是1。中心化后因变量的均值是0。 这样做可以让梯步下降法的数值更加稳定,更容易找到合适的初始值和学习步长。 一个标准化的方法就是让数据的每一列减去该列的均值,然后除以该列的样本标准差($sd(x)$): ![image.png](https://bbs-img

    作者: 黄生
    180
    2
  • 浅谈深度学习常用术语

    深度学习常用术语· 样本(sample)或输入(input)或数据点(data point):训练集中特定的实例。我们在上一章中看到的图像分类问题,每个图像都可以被称为样本、输入或数据点。· 预测(prediction)或输出(output):由算法生成的值称为输出。例如,在先前

    作者: QGS
    21
    0
  • 学习笔记-如何提升深度学习性能?

    特征选择 f. 重新定义问题2. 从算法上提升性能   a. 算法的筛选 b. 从文献中学习 c. 重采样的方法3. 从算法调优上提升性能   a. 模型可诊断性 b. 权重的初始化 c. 学习率 d. 激活函数 e. 网络结构 f. batch和epoch g. 正则项 h. 优化目标

    作者: RabbitCloud
    631
    1
  • 深度学习入门》笔记 - 08

    208189864369.png) 这个算法就是梯度下降法,在更新w的过程中,加入了一个系数$\alpha$,他是一个比较小的正数,叫做`学习步长`,这样可以让w更新的速度变慢一些,使得w更容易收敛。

    作者: 黄生
    147
    3
  • 深度学习之无监督学习算法

    供的值是特征还是目标。通俗地说,无监督学习是指从不需要人为注释样本的分布中抽取信息的大多数尝试。该术语通常与密度估计相关,学习从分布中采样,学习从分布中去噪,需要数据分布的流形,或是将数据中相关的样本聚类。        一个经典的无监督学习任务是找到数据的 “最佳”表示。“最佳

    作者: 小强鼓掌
    950
    1
  • 深度学习之权重比例

    权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现

    作者: 小强鼓掌
    958
    5
  • 深度学习之任务 T

            机器学习可以让我们解决一些人为设计和实现固定程序很难解决的问题。从科学和哲学的角度来看,机器学习受到关注是因为提高我们对机器学习的认识需要提高我们对智能背后原理的理解。       如果考虑 “任务”比较正式的定义,那么学习的过程并不是任务。       在相对正式的

    作者: 小强鼓掌
    726
    2
  • 深度学习之代价函数

            深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是和其他的参数模型例如线性模型的代价函数相同的。       在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使

    作者: 小强鼓掌
    740
    2
  • 深度学习之正则化

    没有免费午餐定理暗示我们必须在特定任务上设计性能良好的机器学习算法。我们建立一组学习算法的偏好来达到这个要求。当这些偏好和我们希望算法解决的学习问题相吻合时,性能会更好。        至此,我们具体讨论修改学习算法的方法只有,通过增加或减少学习算法可选假设空间的函数来增加或减少模型的容量。

    作者: 小强鼓掌
    833
    3
  • 深度学习之maxout 单元

    {(i − 1)k + 1, . . . , ik}。这提供了一种方法来学习对输入 x 空间中多个方向响应的分段线性函数。maxout 单元可以学习具有多达 k 段的分段线性的凸函数。maxout 单元因此可以视为学习激活函数本身而不仅仅是单元之间的关系。使用足够大的 k,maxout

    作者: 小强鼓掌
    1103
    1
  • 深度学习之动量举例

    为什么特别使用 −v(t) 和粘性阻力呢?部分原因是因为 −v(t) 在数学上的便利——速度的整数幂很容易处理。然而,其他物理系统具有基于速度的其他整数幂的其他类型的阻力。例如,颗粒通过空气时会受到正比于速度平方的湍流阻力,而颗粒沿着地面移动时会受到恒定大小的摩擦力。这些选择都

    作者: 小强鼓掌
    420
    2
  • 深度学习之计算图

    为了更精确地描述反向传播算法,使用更精确的计算图(computational graph)语言是很有帮助的。将计算形式化为图形的方法有很多。这里,我们使用图中的每一个节点来表示一个变量。变量可以是标量、向量、矩阵、张量、或者甚至是另一类型的变量。为了形式化我们的图形,我们还需引入

    作者: 小强鼓掌
    948
    3