内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 深度学习之对抗样本

    回归,由于它们被限制为线性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。

    作者: 小强鼓掌
    630
    3
  • 浅谈深度学习

    首先要明白什么是深度学习深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理(NLP)领域。显然,“深度学习”是与机器学习中的“神经网络

    作者: 运气男孩
    1268
    3
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    955
    4
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2441
    1
  • 深度学习概念

    深度学习概念 深度学习(Deep Learning, DL)由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。 深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)

    作者: QGS
    973
    3
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1554
    1
  • 深度学习 - 深度学习 (人工神经网络的研究的概念)

    文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)

    作者: 简简单单Onlinezuozuo
    发表时间: 2022-02-18 15:08:32
    608
    0
  • 学习深度学习是否学习机器学习

    学习深度学习是否学习完机器学习,对于学习顺序不太了解

    作者: 飞奔的野马
    5964
    23
  • 深度学习

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    662
    1
  • 深度学习是什么?

    学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    813
    2
  • 深度学习之虚拟对抗样本

    对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么 yˆ 提供正确标签的可能性很大。我们可以搜索一个对抗样本 x′,导致分类器输出一个标签 y′ 且 y′

    作者: 小强鼓掌
    729
    3
  • 深度学习深度学习界以外的微分

    深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse

    作者: 小强鼓掌
    438
    0
  • 机器学习深度学习

    能够适应各种数据,特别是数据较小的场景。如果数据迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该算法包含有很多参数,因此训练它们需要比

    作者: QGS
    678
    2
  • 深度学习之平滑先验

    距离拉大时而减小。局部核可以看作是执行模版匹配的相似函数,用于度量测试样本 x 和每个训练样本 x(i) 有多么相似。近年来深度学习的很多推动力源自研究局部模版匹配的局限性,以及深度学习如何克服这些局限性 (Bengio et al., 2006a)。决策树也有平滑学习的局限性,因为它将输入空间分成和叶节点一样多的区

    作者: 小强鼓掌
    1194
    1
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;

    作者: 黄生
    347
    1
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 机器学习深度学习

    有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫

    作者: ypr189
    730
    1
  • 深度学习应用开发学习

    件不仅展示了人工智能的演进,也体现了其在系统性思维上的挑战。在机器学习领域,我学习了有监督学习、无监督学习、半监督学习和强化学习等概念。特别是强化学习,它通过奖励和惩罚机制进行学习,非常适合棋类游戏。而无监督学习中的聚类算法,让我意识到它在日常生活中的广泛应用,比如超市货架的商品

    作者: 黄生
    22
    0
  • 浅谈深度学习

    前言当今计算机科技领域中,深度学习是最具有影响力的技术之一。这篇文章将介绍深度学习是什么,它的应用领域,以及为什么它如此重要。简介深度学习是一种机器学习技术,它使用大量人工神经网络来模拟人类大脑的工作方式。这些神经网络可以自动从数据中学习模式,并根据这些模式进行预测和分类。深度学习技术已经在多

    作者: 运气男孩
    23
    3