内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习入门》笔记 - 12

    学习步长$\alpha$是一个很重要的参数。 如果太小,算法会收敛的很慢。 如果太大,容易造成算法不收敛,甚至发散。 自变量的标准化,和因变量的中心化,是建立深度学习模型常用的数据预处理方法。 他们的好处,是不仅可以让梯度下降法的数值表现的更加稳定,还有助于我们找到合适的初始值和步长。

    作者: 黄生
    258
    1
  • 深度学习入门》笔记 - 01

    之前学了一个深度学习应用开发,学了一段时间,后来就没学了。 确实是"靡不有初,鲜克有终",现在不愿意再继续之前的学。我又找了一本书从头开始,这本书的名字是深度学习入门与TensorFlow实践>。 `数(scalar)`是一个数字。 简直是废话。 不过这才刚开始嘛。 多个数字有序

    作者: 黄生
    282
    1
  • 深度学习之虚拟对抗

    性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么

    作者: 小强鼓掌
    677
    1
  • 深度学习入门》笔记 - 05

    接下来就是讲线性模型了。线性模型相对比较简单,但是他是学习比较复杂的深度学习模型的一个基础,而且线性模型本身也具有广泛的用途。 这里讲了线性模型中的线性回归模型和logistic模型。线性回归模型用于处理`回归问题`。logistic模型用于处理`分类问题`。 线性回归模型可以写作如下的形式:

    作者: 黄生
    143
    3
  • 深度学习之浅层网络

    存在一些函数族能够在网络的深度大于某个值 d 时被高效地近似,而当深度被限制到小于或等于 d 时需要一个远远大于之前的模型。在很多情况下,浅层模型所需的隐藏单元的数量是 n 的指数级。这个结果最初被证明是在那些不与连续可微的神经网络类似的机器学习模型中出现,但现在已经扩展到了这些模型。第一个结果是关于逻辑门电路的

    作者: 小强鼓掌
    423
    0
  • 深度学习之正切传播

    为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不

    作者: 小强鼓掌
    343
    1
  • 深度学习之正切传播

    为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不

    作者: 小强鼓掌
    660
    1
  • Ubuntu深度学习环境配置

    Ubuntu深度学习环境配置安装组合:Anaconda+PyTorch(CPU版)或PyTorch(GPU版)开源贡献:陈信达,华北电力大学3.1 Anacond安装Anaconda和Python版本是对应的,所以需要选择安装对应Python2.7版本的还是Python3.7版本

    作者: @Wu
    663
    0
  • 深度学习之模型平均

    aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model avera

    作者: 小强鼓掌
    734
    2
  • 深度学习之长期依赖

    当计算图变得极深时,神经网络优化算法会面临的另外一个难题就是长期依赖问题——由于变深的结构使模型丧失了学习到先前信息的能力,让优化变得极其困难。深层的计算图不仅存在于前馈网络,还存在于之后介绍的循环网络中(在第十章中描述)。因为循环网络要在很长时间序列的各个时刻重复应用相同操作来

    作者: 小强鼓掌
    317
    2
  • 深度学习的现实应用《深度学习与Mindspore实践》今天你读书了吗?

    要成果就是词向量的学习。  医疗领域深度学习算法可以发现人类无法捕捉到的特征。研究人员利用这些算法对细胞图像进行分类,建立基因组连接,加速药物发明周期。在医疗领域,深度卷积神经网络被应用于癌细胞分类、病变检测、器官分割和图像增强等医疗图像分析金融领域,深度学习被应用于金融欺诈检测

    作者: QGS
    1025
    2
  • 深度学习入门》笔记 - 20

    因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1

    作者: 黄生
    24
    1
  • 深度学习之监督学习算法

    源自这样一个视角,教员或者老师提供目标 y 给机器学习系统,指导其应该做什么。在无监督学习中,没有教员或者老师,算法必须学会在没有指导的情况下让数据有意义。尽管无监督学习和监督学习并非完全没有交集的正式概念,它们确实有助于粗略分类我们研究机器学习算法时遇到的问题。传统地,人们将回归,分类

    作者: 小强鼓掌
    864
    2
  • 深度学习之隐藏单元

    一种形式,而不是对输入原始值的破坏。例如,如果模型学得通过鼻检测脸的隐藏单元 hi,那么丢失 hi 对应于擦除图像中有鼻子的信息。模型必须学习另一种 hi,要么是鼻子存在的冗余编码,要么是脸部的另一特征,如嘴。传统的噪声注入技术,在输入端加非结构化的噪声不能够随机地从脸部图像中抹

    作者: 小强鼓掌
    833
    5
  • 深度学习之噪声鲁棒性

    要用于循环神经网络 (Jim et al., 1996; Graves, 2011)。这可以被解释为关于权重的贝叶斯推断的随机实现。贝叶斯学习过程将权重视为不确定的,并且可以通过概率分布表示这种不确定性。向权重添加噪声是反映这种不确定性的一种实用的随机方法。

    作者: 小强鼓掌
    637
    1
  • 深度学习之隐藏单元

    微的。例如,整流线性单元 g(z) = max{0, z} 在 z = 0 处不可微。这似乎使得 g 对于基于梯度的学习算法无效。在实践中,梯度下降对这些机器学习模型仍然表现得足够好。部分原因是神经网络训练算法通常不会达到代价函数的局部最小值,而是仅仅显著地减小它的值,如图 4.

    作者: 小强鼓掌
    638
    2
  • 深度学习入门》笔记 - 09

    现在我们来尝试迭代多次,看看效果。 从w=0开始 ```python #w初始值给0 x,y=0.5,0.8 w=0;lr=0.5 #lr学习率=0.5 pred=x*w loss=((pred-y)**2)/2 grad=(pred-y)*x print('自变量:'+str(x))

    作者: 黄生
    419
    3
  • 深度学习之逻辑回归

    优解。我们可以通过梯度下降最小化负对数似然达到这一点。通过确定正确的输入和输出变量上的有参条件概率分布族,相同的策略基本上可以用于任何监督学习问题。

    作者: 小强鼓掌
    731
    3
  • 深度学习之贝叶斯统计

    的已知知识表示成先验概率分布 (prior probability distribution),p(θ)(有时简单地称为 “先验”)。一般而言,机器学习实践者会选择一个相当宽泛的(即,高熵的)先验分布,反映在观测到任何数据前参数 θ 的高度不确定性。例如,我们可能会假设先验 θ 在有限区间中均匀分布。许多先验偏好于“更简单”

    作者: 小强鼓掌
    619
    1
  • 深度学习之Dropout启发

    Bagging。然而,这种参数共享策略不一定要基于包括和排除。原则上,任何一种随机的修改都是可接受的。在实践中,我们必须选择让神经网络能够学习对抗的修改类型。在理想情况下,我们也应该使用可以快速近似推断的模型族。我们可以认为由向量 µ 参数化的任何形式的修改,是对 µ 所有可能的值训练

    作者: 小强鼓掌
    831
    3