检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
28和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
据层的安全防护套件。及时检测主机层、应用层、网络层和数据层的安全入侵行为。 ModelArts服务涉及对互联网开放的Web应用,采用了统一推荐的Web安全组件防范Web安全风险,并且通过WAF进行安全防护。 所有承载ModelArts服务的主机部署了主机安全防护产品。包括不限于华为自研HSS或计算安全平台CSP。
c字段配套。 weight Integer 权重,分配到此模型的流量权重。 source_type String 模型来源,当模型是由自动学习产生时返回此字段,取值为auto。 model_id String 模型ID。 src_path String 批量任务输入数据的OBS路径,例如:“https://xxx
co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
Lite DevServer,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成LLaVA模型训练。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。训练至少需要单机8卡,推理需要单机单卡。 表1 环境要求
本文档适配昇腾云ModelArts 6.3.911版本,请参考表1获取配套版本的软件包和镜像,请严格遵照版本配套关系使用本文档。 确保容器可以访问公网。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 软件配套版本 表1 获取软件 分类 名称 获取路径
co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
completed ”。如果OAuth鉴权的token过期,则此时再push会弹框让输入用户的token或者账户信息,按照提示输入即可。这里推荐使用Personal Access Token授权方式,如果出现密码失效报错请参考git插件密码失效如何解决? 图10 提交代码至GitHub仓库
28和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:CPU架构必须选择鲲鹏计算,镜像推荐选择EulerOS。 图1 购买ECS 创建镜像组织。 在SWR服务页面创建镜像组织。 图2 创建镜像组织 安装Docker。 检查docker是否安装。
true, "default": 0.001, "help": "学习率" }, { "name": "
co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 7 llama3-8b √ √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 7 llama3-8b √ √ √ √ √ https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
Boolean SMN开关。 subscription_id String SMN消息订阅ID。 exeml_template_id String 自动学习模板ID。 last_modified_at String 最近一次修改的时间。 package WorkflowServicePackege
copy_parallel('obs://bucket-name/dir1/dir2/', '/cache') 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
启动AOE调优后,模型转换时长会延长到数小时,因为其中包含了AOE的转化过程耗时较长。您也可以指定调优时间,一般情况下时间越长效果会越好,一般10h以内即可,推荐在后台执行。调优完成后,默认将AOE生成的知识库保存在“/root/Ascend/latest/data/aoe”路径下,同时会在aoe_
占用显卡资源,建议增加1个容器,也可以在全量推理或增量推理的容器上启动。 前提条件 已准备好DevServer环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保容器可以访问公网。
本文档主要介绍如何利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,完成SDXL的LoRA微调训练。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B。 表1 环境要求 名称 版本 CANN cann_8
--max-num-batched-tokens:prefill阶段,最多会使用多少token,必须大于或等于--max-model-len,推荐使用4096或8192。 --dtype:模型推理的数据类型。支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。