检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
工作流配置参数说明 参数 说明 推荐填写 所属行业 单击,选择应用所属行业。 本样例选择“通用”。 选择工作流 选择开发应用的预置工作流。 本样例选择“通用文本分类工作流”。 资源配置 按图5和表3填写资源配置。 图5 资源配置 表3 资源配置参数说明 参数 说明 推荐填写 数据处理资源 用于数据处理的资源池和资源类型。
在“我的应用”页签下,单击“新建应用”。 进入“新建应用”页面。 按表1填写“基本信息”、“工作流配置”和“资源配置”。 图1 新建应用 表1 新建应用参数说明 参数 说明 推荐填写 应用名称 必填参数,支持输入中英文、数字、下划线及中划线。 本样例可输入“蛋糕识别应用”。 应用负责人 选填参数,应用负责人的姓名,
数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前
会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前
练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “语种”指文本数据的语言种类。 确认信息后,单击“开始训练”。
预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 确认信息后,单击“开始训练”。 模型训练一般
行业场景的业务数据,快速获得定制服务。此工作流仅支持对中文进行文本分类,且支持单标签分类和多标签分类。 适用场景 智能问答、舆情分析、内容推荐等场景。 优势 针对场景领域提供预训练模型,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
超市、零售商店等场景下,商品种类更新速度快,商品识别技术会大大提升商品优化和运营效率。 视觉套件提供提供零售商品识别工作流,基于该工作流开发的应用可自动识别商品,自动学习自动训练特性可自助更新商品识别应用,提高零售商品新品上线效率。 已发布北京四区域 零售商品识别工作流 OBS 2.0支持热轧钢板表面缺陷检测工作流
通过中文分词、短文本相似度、命名实体识别等自然语言处理相关技术,计算两个问题对的相似度,可解决问答、对话、语料挖掘、知识库构建等问题。 内容推荐 通过文本分类预测模型,精确匹配出语义相似的内容,快速构建内容推荐场景。 视觉套件 商品识别 无人超市构建商品视觉自动识别模型,无需扫码,AI自主结账。 气象智能预测 基于
高精度:大部分模型的准确率高于90%。 少数据:训练所需的数据量更少。 智能标注:提升标注效率。 极致性能 依托ModelArts 基础平台,深度软硬件协同。 资源秒级调度,按需使用。 训练任务性能提升30%。 灵活开放 灵活的部署方式:支持在线部署、边缘部署、Hilens部署等多种部署方式。
象管理操作。推荐使用此工具创建桶或上传对象。obsutil是一款用于访问管理OBS的命令行工具,对于熟悉命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执行数据上传操作,或者您习惯于使用API和SDK,推荐选择OBS的API或SDK方法创建桶和上传对象。
象管理操作。推荐使用此工具创建桶或上传对象。obsutil是一款用于访问管理OBS的命令行工具,对于熟悉命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执行数据上传操作,或者您习惯于使用API和SDK,推荐选择OBS的API或SDK方法创建桶和上传对象。
象管理操作。推荐使用此工具创建桶或上传对象。obsutil是一款用于访问管理OBS的命令行工具,对于熟悉命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执行数据上传操作,或者您习惯于使用API和SDK,推荐选择OBS的API或SDK方法创建桶和上传对象。