已找到以下 10000 条记录
  • 数据样本少?数据不出局?联邦学习专治各种不服!

    根据数据分布的场景,联邦学习可以分为:横向联邦学习,纵向联邦学习以及联邦迁移学习。 1. 横向联邦学习:训练的数据特征相同,分布在不同地方的数据是属于不同用户的,属于样本数量的扩展,适用于同领域的样本量联合建模。 2. 纵向联邦学习:训练的数据特征不同,分布在不同地方的数据是属于相同用户的,属于样本特征的扩展,适用于不同领域的样本特征联合建模。

    作者: iMaster NAIE官方
    发表时间: 2021-08-28 03:26:46
    2629
    0
  • 更新的训练样本,如何同步在自动学习模型中同步?

    样本后怎么添加自动学习的模型中?

    作者: yd_250218838
    21
    3
  • 深度学习是什么?

    深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。深度学习学习样本数据的内在规律和表示层次,这

    作者: QGS
    821
    2
  • 《AI安全之对抗样本入门》—2 打造对抗样本工具箱

    第2章打造对抗样本工具箱对抗样本深度学习领域一个新兴的热点内容,非常强调理论和工程相结合。在开启新的学习旅途之前,我们先介绍一下对抗样本环境的搭建过程,强烈建议读者在Linux或者Mac环境下进行搭建,因为深度学习的常用工具几乎都是基于Python开发的,但是Python相关的

    作者: 华章计算机
    发表时间: 2019-06-17 17:47:40
    5319
    0
  • 样本学习在文心ERNIE3.0多分类任务应用--提示学习

    初始化,充分利用了预训练模型学习到的参数。 对于标注样本充足的场景可以直接使用预训练模型微调实现文本多分类,对于尚无标注或者标注样本较少的任务场景我们推荐使用小样本学习,以取得比微调方法更好的效果。 下边通过新闻分类的例子展示如何使用小样本学习来进行文本分类。 0.1 环境要求

    作者: 汀丶
    发表时间: 2022-11-11 06:09:06
    312
    0
  • 《零样本学习:突破瓶颈,开启智能新征程》

    式模型可以通过生成新的样本数据来帮助机器进行学习。在零样本学习中,机器可以利用生成式模型来生成新的样本数据,从而弥补样本不足的问题。例如,在图像识别中,可以通过生成式模型生成新的图像样本,从而提高对新类别的识别和分类能力。 零样本学习的未来展望 零样本学习作为人工智能领域的重要研

    作者: 程序员阿伟
    发表时间: 2024-12-28 23:12:23
    0
    0
  • 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知

    服务公告 全部公告 > 产品公告 > 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 华为云深度学习服务推理特性(公测)于2018年12月21日00:00(北京时间)下线通知 2018-11-20 尊敬的华为云客户: 华为云计划于2018/12/21

  • 机器学习深度学习

    有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫

    作者: ypr189
    731
    1
  • 创建纵向联邦学习作业 - 可信智能计算服务 TICS

    整数。 分类阈值 区分正负例的得分阈值。 逻辑回归/FiBiNET 学习率 控制权重更新的幅度,影响训练收敛速度和模型精度,取值范围为0~1。 迭代次数 完成全部样本训练的次数,取值为正整数。 批大小 单次训练使用的样本数,取值为正整数。 分类阈值 区分正负例的得分阈值 自定义配置:

  • 管理样本库 - 数据治理中心 DataArts Studio

    删除操作无法撤销,请谨慎操作。 编辑样本:在样本库管理页面,单击对应样本操作栏中的“编辑”,即可修改样本的各项参数。 删除样本:在样本库管理页面,单击对应样本操作栏中的“删除”,即可删除样本。 注意,被脱敏算法引用的样本不能被删除。若要删除已引用的样本,需要先修改引用关系,再进行删除操作。

  • 深度学习——常用评价指标

    集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。  ROC曲线绘制:  (1)根据每个测试样本属于正样本的概率值

    作者: QGS
    784
    3
  • 准备工作 - CodeArts IDE Online

    Editor,可以在里面编辑和运行cell。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 查询样本列表 - AI开发平台ModelArts

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

  • 深度学习

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    662
    1
  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1254
    2
  • 创建和训练模型 - CodeArts IDE Online

    epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • “智能基座”产教融合协同育人基地

    本实验以某数据中心MySQL数据库迁移为例,指导用户掌握DRS迁移流程。 立即实验 基于深度学习算法的语音识别 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练。

  • 深度学习 - 深度学习 (人工神经网络的研究的概念)

    文章目录 深度学习 - 深度学习 (人工神经网络的研究的概念)1、概念2、相关应用场景3、简介4、区别于浅层学习5、典型模型案例6、深度学习是如何进行训练的自下上升的非监督学习自顶向下的监督学习 深度学习 - 深度学习 (人工神经网络的研究的概念)

    作者: 简简单单Onlinezuozuo
    发表时间: 2022-02-18 15:08:32
    608
    0
  • 请问样本在哪里上传?

    请问在哪里上传病毒样本?直接发论坛里可能不太合适

    作者: 金牌饲养员
    19
    1
  • 时序对齐预测的监督表示学习与少样本序列分类

    列表示学习,我们展示了用各种度量学习损失训练的 TAP 以更快的推理速度实现了具有竞争力的性能。对于小样本动作分类,我们将 TAP 作为基于度量学习的episode训练范式中的距离度量。这种简单的策略取得了与最先进的小样本动作识别方法接近的结果。https://openreview

    作者: 可爱又积极
    1973
    2