已找到以下 10000 条记录
  • 创建纵向联邦学习作业 - 可信智能计算服务 TICS

    整数。 分类阈值 区分正负例的得分阈值。 逻辑回归/FiBiNET 学习率 控制权重更新的幅度,影响训练收敛速度和模型精度,取值范围为0~1。 迭代次数 完成全部样本训练的次数,取值为正整数。 批大小 单次训练使用的样本数,取值为正整数。 分类阈值 区分正负例的得分阈值 自定义配置:

  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 深度学习概念

    Intelligence)。深度学习学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语言和图像识别方面取得的效果,远远超过先前

    作者: QGS
    973
    3
  • 《AI安全之对抗样本入门》

    见的对抗样本生成算法是已知的,训练数据集也是已知的,那么可以通过常见的一些对抗样本工具箱,比如AdvBox 或者FoolBox,在训练数据的基础上生成对应的对抗样本,然后让深度学习模型重新学习,让它认识这些常见的对抗样本,这样新生成的深度学习模型就具有了一定的识别对抗样本的能力。与Adversarial

    作者: 华章计算机
    发表时间: 2019-06-17 14:56:38
    25641
    0
  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    964
    4
  • 深度学习

    加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库

    作者: G-washington
    2443
    1
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1554
    1
  • 目标引导的人类注意力估计提升零样本学习

    样本学习(Zero-shot learning, ZSL)作为学习无标注类别的一种方法,是当前计算机视觉领域重要的前沿分支之一。大部分零样本学习的方法通过构建视觉特征和语义特征之间的映射关系或是通过生成模型(GAN、VAE等)生成不可见类样本的方式来解决零样本学习任务。根据经验

    作者: 可爱又积极
    1313
    1
  • 深度学习简介

    信息进一步优化神经网络权值的深度置信网络(DBN)。 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation

    作者: 某地瓜
    1681
    1
  • 什么是深度学习

    同的特征置于哪一层。也就是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型

    作者: 角动量
    1546
    5
  • 随机样本选择——快速求解机器学习中的优化问题

    有少数感兴趣的报告,这里谈一下全场最后一个报告。报告人是Jorge Nocedal,就是著名的LBFGS的作者。 他关注的问题是一类机器学习中非常常见的优化模型:

    作者: 格图洛书
    发表时间: 2021-12-29 18:20:39
    394
    0
  • “智能基座”产教融合协同育人基地

    本实验以某数据中心MySQL数据库迁移为例,指导用户掌握DRS迁移流程。 立即实验 基于深度学习算法的语音识别 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练。

  • 深度学习应用开发》学习笔记-10

    入变量xi样本指数据的特定实例x,有标签样本具有{特征,标签},用于训练模型;无标签样本具有{特征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学

    作者: 黄生
    1431
    3
  • EI智能数据湖培训认证

    认证亮点 课程覆盖4大热门EI服务 DWS MRS DAYU DLI DWS MRS DAYU DLI 学练考证一站式学习 课程学习 云端实验 考试认证 课程学习 云端实验 考试认证 进阶式课程设计 涵盖中级-高级-专家进阶内容 涵盖中级-高级-专家进阶内容 认证步骤 学-在线课程

  • 深度学习随机取样、学习

    通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误

    作者: 运气男孩
    1444
    5
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 样本学习【一】论文分享:Few-Shot Learning via Embedding Adaptation

    2020        在深度学习时代,基于少量数据学习视觉模型具有非常强大的挑战性。目前大部分小样本学习方法都是基于已知类数据学习视觉模型,然后迁移到新的小样本数据中。这类方法学习的是一个通用模型,没有针对目标任务进行特定的学习,因此在是配到不同目标任务上表现不佳。这篇文章提出了基于集合学习的方法

    作者: 星火燎原
    发表时间: 2020-08-31 10:54:19
    10054
    0
  • ML之LoR:利用LoR二分类之非线性决策算法案例应用之划分正负样本

    ML之LoR:利用LoR二分类之非线性决策算法案例应用之划分正负样本     目录 输出结果 实现代码       输出结果 1、对数据集进行特征映射 2、正则化 → 正则化 → 过度正则化   实现代码 import numpy as npimport

    作者: 一个处女座的程序猿
    发表时间: 2021-03-30 15:47:02
    525
    0
  • 机器学习深度学习

    业也在快速布局。2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。3、执行时间执行时间是指训练算法所需要的时间量。一般来说,深度学习算法需要大量时间进行训练。这是因为该

    作者: QGS
    678
    2