检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
批量删除样本 功能介绍 批量删除样本。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/datasets/{dataset
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数
我在训练的时候总是的不到号的效果,后面发现是样本的类别差别太大了,正负样本快10:1,我要怎么做呢,已经没有更多的数据了
批量更新样本标签 功能介绍 批量更新样本标签,包括添加、修改和删除样本标签。当请求体中单个样本的“labels”参数传空列表时,表示删除该样本的标签。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
该API属于ModelArts服务,描述: 批量删除样本。接口URL: "/v2/{project_id}/datasets/{dataset_id}/data-annotations/samples/delete"
objects 样本标签列表。 metadata 否 SampleMetadata object 样本metadata属性键值对。 name 否 String 样本文件名称,名称不能包含!<>=&"'特殊字符,长度为0-1024位。 sample_type 否 Integer 样本类型。可选值如下:
样本管理 查询样本列表 查询单个样本详情 批量删除样本 父主题: 数据管理
此时企业A可以编写如下的sql语句统计双方的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum( case when i.label > 0 then 1 else 0 end ) as positive_count
小样本学习本baseline采用pytorch框架,应用ModelArts的Notebook进行开发为该论文复现代码Cross-Domain Few-Shot Classification via Learned Feature-Wise TransformationHung-Yu
而不是区分某个指定类别的能力。小样本学习在推理阶段,其query样本来自于未知的类别,其类别并不包含在训练集中,需要使用小样本构建新的support set,对query样本进行分类1603369079169026760.png目前主流的小样本学习的主要方法是基于元学习的框架在
第2章打造对抗样本工具箱对抗样本是深度学习领域一个新兴的热点内容,非常强调理论和工程相结合。在开启新的学习旅途之前,我们先介绍一下对抗样本环境的搭建过程,强烈建议读者在Linux或者Mac环境下进行搭建,因为深度学习的常用工具几乎都是基于Python开发的,但是Python相关的
删除操作无法撤销,请谨慎操作。 编辑样本:在样本库管理页面,单击对应样本操作栏中的“编辑”,即可修改样本的各项参数。 删除样本:在样本库管理页面,单击对应样本操作栏中的“删除”,即可删除样本。 注意,被脱敏算法引用的样本不能被删除。若要删除已引用的样本,需要先修改引用关系,再进行删除操作。
请问在哪里上传病毒样本?直接发论坛里可能不太合适
String 样本对齐算法。 OPRF, SQL_JOIN; datasets 否 Map<String,String> 样本对齐数据集 align_ids 否 Map<String,String> 样本对齐字段ID集合 agents 否 Array of strings 样本对齐agentId
见的对抗样本生成算法是已知的,训练数据集也是已知的,那么可以通过常见的一些对抗样本工具箱,比如AdvBox 或者FoolBox,在训练数据的基础上生成对应的对抗样本,然后让深度学习模型重新学习,让它认识这些常见的对抗样本,这样新生成的深度学习模型就具有了一定的识别对抗样本的能力。与Adversarial
set,使用f()提取特征向量,将K shot个样本的特征向量做均值和归一化。使用query向量与N 个向量做对比,训练分类器。fine tuning时,固定f(),使用少量的标签样本,通过最小化交叉熵,训练一个新的分类器,最终对小样本任务进行分类。在 CUB 和 miniImageNet
小样本学习 本baseline采用pytorch框架,应用ModelArts的Notebook进行开发 为该论文复现代码 Cross-Domain Few-Shot Classification via Learned Feature-Wise Transformation
sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status
样本抽样 Demo #!/usr/bin/python3 from random import randint,sample ''' randint(0,50):0-50之间的随机整数 range(100):[0,100) sample(lst,10):从lst中 随机抽取