检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
default_value 否 String 标签属性默认值。 id 否 String 标签属性ID。可通过调用标签列表查询。 name 否 String 标签属性名称。不能超过64个字符,不能包含字符!<>=&"'。 type 否 String 标签属性类型。可选值如下: text:文本
分失败。建议检查您的标注信息,保证标注多标签的图片,超过2张。 数据集切分后,训练集和验证集包含的标签类别不一样。出现这种情况的原因:多标签场景下时,做随机数据切分后,包含某一类标签的样本均被划分到训练集,导致验证集无该标签样本。由于这种情况出现的概率比较小,可尝试重新发布版本来解决。
创建训练作业标签 功能介绍 创建训练作业标签,支持批量添加,当添加的标签key已存在,则覆盖该标签的value。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST
创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自动学习中偏好设置的各参数训练速度大概是多少
画面中框出目标,然后在弹出的添加标签文本框中,直接输入新的标签名,在文本框前面选中标签颜色,单击“添加”完成1个物体的标注。如果已存在标签,从下拉列表中选择已有的标签,然后单击“添加”完成标注。逐步此画面中所有物体所在位置,一帧对应的画面可添加多个标签。 支持的标注框与“物体检测
训练完成后,您可以在预测分析节点中单击查看训练详情,如“标签列”和“标签列数据类型”、“准确率”、“评估结果”等。 该示例为二分类的离散型数值,评估效果参数说明请参见表1。 不同类型标签列数据产生的评估结果说明请参见评估结果说明。 图1 模型评估报告 同一个自动学习项目可以训练多次,每次训练会注册一个
是否删除标签及包含标签的样本。可选值如下: 0:只删除标签 1:删除标签及包含标签的样本 2:删除标签和包含标签的样本及其源文件 请求参数 表3 请求Body参数 参数 是否必选 参数类型 描述 labels 否 Array of Label objects 待删除标签列表。 表4
型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。如果您对模型预测结果满意,可根据界面提示调用接口访问在线服务。 目前只支持jpg、jpeg、bmp、png格式的图片。 表1 预测结果中的参数说明 参数 说明
of Label objects 标签列表。 total_number Integer 标签数量。 表4 Label 参数 参数类型 描述 attributes Array of LabelAttribute objects 标签的多维度属性,如标签为“音乐”,可能包含属性“风格”、“歌手”等。
生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(32GB),约耗时9.3秒。 图2 生成图片耗时(2) 不开启Flash
TmsTagForDelete objects 要删除的标签列表。 表3 TmsTagForDelete 参数 是否必选 参数类型 描述 key 是 String TMS标签的key。 value 否 String TMS标签的value,非必填。 响应参数 状态码: 400 表4
TmsTagForDelete objects 要删除的标签列表。 表4 TmsTagForDelete 参数 是否必选 参数类型 描述 key 是 String TMS标签的key。 value 否 String TMS标签的value,非必填。 响应参数 状态码: 400 表5
在ModelArts的训练作业中添加标签。 可以在创建训练作业页面添加标签,也可以在已经创建完成的训练作业详情页面的“标签”页签中添加标签。 在ModelArts的在线服务中添加标签。 可以在创建在线服务页面添加标签,也可以在已经创建完成的在线服务详情页面的“标签”页签中添加标签。 图1 添加标签 用户也
AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。
准备数据 自动学习的每个项目对数据有哪些要求? 创建预测分析自动学习项目时,对训练数据有什么要求? 使用从OBS选择的数据创建表格数据集如何处理Schema信息? 物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 父主题: Standard自动学习
Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类
资源标签管理 查询资源池的所有标签 查询资源池上的标签
自动分组可以理解为数据标注的预处理,先使用聚类算法对未标注图片进行聚类,再根据聚类结果进行处理,可以分组打标或者清洗图片。 例如,用户通过搜索引擎搜索XX,将相关图片下载并上传到数据集,然后再使用自动分组,可以将XX图片分类,比如论文、宣传海报、确认为XX的图片、其他。用户可以根据分组结果,快速剔除
查询推理服务标签 功能介绍 查询当前项目下的推理服务标签,默认查询所有工作空间,无权限不返回标签数据。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1
创建处理任务,支持创建“特征分析”任务和“数据处理”两大类任务。可通过指定请求体中的复合参数“template”的“id”字段来创建某类任务。 “特征分析”是指基于图片或目标框对图片的各项特征,如模糊度、亮度进行分析,并绘制可视化曲线,帮助处理数据集。 “数据处理”是指从大量的、杂乱无章的、难以理解的数据中抽取或