检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
物体检测图片标注,一张图片是否可以添加多个标签? 可以,一张图片可添加多个标签。 父主题: 数据标注
创建图片类数据集标注任务 创建图片类数据集标注任务前,请先完成创建图片类数据集加工任务。 创建图片类数据集标注任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据标注 > 标注管理”,单击页面右上角“创建标注任务”。
线。 图2 上线标注后的数据集 对不再使用的数据集可在操作列执行下线操作。若对当前标注数据集已执行发布操作发布图片类数据集,则不可将该标注数据集下线。 父主题: 标注图片类数据集
创建图片类数据集评估标准 ModelArts Studio大模型开发平台针对图片数据集预设的一套评估标准,涵盖了图像清晰度、分辨率、标签准确性、图像一致性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。
标注图片类数据集 创建图片类数据集标注任务 审核图片类数据集标注结果 上线标注后的图片类数据集 父主题: 标注数据集
创建图片类数据集加工任务 创建图片类数据集加工任务前,请先完成“原始数据集”的创建与上线,具体步骤请参见导入数据至盘古平台。 创建图片类数据集加工任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
审核图片类数据集标注结果 创建数据集标注任务时,如果设置了启用标注审核,在完成标注后可以在“标注审核”页面审核标注结果。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
创建图片类数据集评估任务 创建图片类数据集评估任务前,请先完成创建图片类数据集评估标准。 创建图片类数据集评估任务步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据评估 > 评估任务”,单击界面右上角“创建评估任务”。
上线加工后的图片类数据集 加工后的图片类数据集需要执行上线操作,用于后续的数据标注、评估、发布任务,具体步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程 > 数据加工”,在数据集操作列单击“上线”,执行上线操作。
务场景选择“图片+Caption”、“图片+QA对”类型的数据。 图2 创建图片类数据集发布任务 设置发布方式。图片类数据集可选两种发布方式:“单个数据集”、“混合数据集”。选择数据集时,默认选择当前空间数据集,如果用户具备其他空间的访问权限,可以选择来自其他空间的数据集。 若选
乱码和无意义的字符����� 图片类加工算子能力清单 表2 图片类加工算子功能表 算子分类 算子名称 算子描述 数据过滤 图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图片去重 通过把图片结构化处理后,过滤重复的图片/图文对数据。 数据打标 图片鉴黄评分 对图片的涉黄程度进
加工图片类数据集 创建图片类数据集加工任务 上线加工后的图片类数据集 父主题: 加工数据集
获取图片类数据集评估报告 ModelArts Studio大模型开发平台提供了详细的质量评估报告,帮助用户全面了解数据集的质量情况。获取数据集评估报告步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
评估图片类数据集 创建图片类数据集评估标准 创建图片类数据集评估任务 获取图片类数据集评估报告 父主题: 评估数据集
式示例如下: 图片+QA对 图片支持tar,QA对支持jsonl 图片+QA对是指将一张图片和与之相关的问题及答案配对在一起,用于训练模型让其能够理解图片内容并回答与图片相关的问题。 图片:图片以tar包格式存储,可以多个tar包。tar包存储原始的图片,每张图片命名要求唯一(如abc
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供了一
数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。 为了帮
从JSON文件(键值对类型文件)中提取出内容。 HTML内容提取 基于标签路径提取HTML数据内容,并将其他与待提取标签路径无关的内容删除。 电子书内容提取 从电子书中提取出所有文本内容。 智能文档解析 从PDF(支持扫描版)或图片中提取文本,转化为结构化数据,持文本、表格、表单、公式等内容提取。
其他类数据集格式要求 除文本、图片、视频、气象、预测类数据集外,用户训练模型时如果使用较特殊的数据集,ModelArts Studio大模型开发平台支持导入用户自定义的数据集。 例如,在训练CV类算法(如图片分类、图片分割、图片检测等任务)时,用户需使用“其他”类型的数据集。 其
视频类加工算子能力清单 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签和评分等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。
支持jsonl、csv,详见文本类数据集格式要求。 图片类 图片 支持图片、tar,详见图片类数据集格式要求。 图片+Caption 图片支持tar,Caption支持jsonl,详见图片类数据集格式要求。 图片+QA对 图片支持tar,QA对支持jsonl,详见图片类数据集格式要求。 视频类 视频