已找到以下 10000 条记录
  • Python从0到100(五十一):机器学习-线性回归及加州房价预测

    diction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等), 但不是所有的预测都是回归问题。 1.基本原理 线性回归基于以下基本原理: 线性关系假设:假设⽬标变量与特征之间存在线性关系。

    作者: 是Dream呀
    发表时间: 2024-08-28 22:23:34
    58
    0
  • 机器学习2-线性回归

    其中: y是指温度,是预测的值; m是指直线的斜率; x是指每分钟的鸣叫声次数,即输入特征的值。 b是指y轴截距。   按照机器学习的方式,写一个模型方程式: 点击并拖拽以移动点击并拖拽以移动​ 其中: 点击并拖拽以移动点击并拖拽以移动​是指预测的标签(输出值) b是

    作者: 一颗小树x
    发表时间: 2021-06-18 13:19:12
    1819
    0
  • 执行批量预测作业 - 可信智能计算服务 TICS

    在“联邦预测”页面批量预测Tab页,查找待执行的作业,单击“发起预测”,在系统弹窗中填写“分类阈值”,勾选数据集发起联邦预测。 如果在创建联邦预测作业 步骤4中勾选的模型不包含标签方特征,联邦预测支持只勾选己方数据集发起单方预测。 图1 发起预测 图2 勾选数据集 在“联邦预测”页面批量预测Tab

  • 由线性回归来理解深度学习的理论基础(2)

    多重线性回归 普通线性回归的第一个明显变体是多元线性回归。当只有一个特征时,我们有单变量线性回归,如果有多个特征,我们有多元线性回归。对于多元线性回归,模型可以以一般形式表示为:模型的训练即寻找最佳参数θ,以使模型最贴合数据。预测值与目标值之间的误差最小的直线称为最佳拟合线或回

    作者: @Wu
    2285
    8
  • 深度学习基础知识--2.1 回归问题算法

    机器学习问题中,常见的回归分析有线性回归(Linear Regression)、多项式回归(Polynomial Regression)、逻辑回归(Logistic Regression)等。本节重点介绍线性回归算法,逻辑回归将在2.3节重点阐述。线性回归是一个很简单的回归算法,

    作者: HWCloudAI
    发表时间: 2020-12-15 07:50:04
    3351
    0
  • 时序预测 - 网络智能体

    ”。 预测长度:预测的样本数量,默认值“1”。例如当前数据是按小时采集的3000条样本数据,如果想通过模型预测未来1天的样本数据,因为按小时采集,所以为24条数据,那么“预测长度”需要配置为“24”。 预测粒度:保持默认值。 预测类型:取值说明如下所示。本次请选择“时空预测”。

  • 《Python数据挖掘与机器学习实战》—3.5 基于线性回归的股票预测

    3.5 基于线性回归的股票预测  线性回归预测算法一般用以解决“使用已知样本对未知公式参数的估计”类问题。线性回归在整个财务中广泛应用于众多应用程序中。本节将介绍如何使用线性回归进行股票特征的提取与预测。3.5.1 数据获取  本节使用的股票数据从大型数据网站www.quandl

    作者: 华章计算机
    发表时间: 2019-06-17 06:05:48
    2649
    0
  • 线性回归简介(一)

    线性回归简介    1 .线性回归应用场景    房价预测    销售额度预测    贷款额度预测 &nbsp

    作者: 咔吧咔吧
    发表时间: 2020-11-17 08:23:39
    2780
    2
  • 由线性回归来理解深度学习的理论基础(1)

    线性回归 为什么从线性回归开始?因为即使在高中阶段,我们也开始接触到了这个概念。首先从“学习”这个概念讲起,在机器学习(监督学习)中,学习的过程即寻找一个数学方程式,从而使得每一个输入和输出都能够通过这个方程一一对应。在最简单的情境下,这个方程是线性的。什么是线性关系?线性关系

    作者: @Wu
    2489
    7
  • 基于CNN-LSTM-Attention的时间序列回归预测matlab仿真

    算法理论概述         时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,深度学习在时间序列分析上取得了显著的成果,尤其是卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制(Attention)的结合使用。

    作者: 简简单单做算法
    发表时间: 2024-03-05 22:15:06
    65
    0
  • 准备预测分析数据 - AI开发平台ModelArts

    得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、

  • AI开发基本概念 - AI开发平台ModelArts

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

  • Java代码使用最小二乘法实现线性回归预测

    来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小 最小二乘法也是一种优化方法,求得目标函数的最优值。并且也可以用于曲线拟合,来解决回归问题。回归学习最常用的损失函数

    作者: 洛阳泰山
    发表时间: 2023-02-22 04:42:59
    202
    0
  • 创建预测分析项目 - AI开发平台ModelArts

    可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。

  • 【每天进步一点点】机器学习基础——基于鲍鱼年龄预测的线性回归Demo

    机器学习基础——基于鲍鱼年龄预测的线性回归Demo(附代码)。回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。通常使用曲线/线来拟合数据点,目标是使曲线到数据点的距离差异最小。

    作者: AI资讯
    1158
    3
  • 部署预测分析服务 - AI开发平台ModelArts

    单击“预测”页签,进行服务测试。 图1 服务测试 下面的测试,是您在自动学习预测分析项目页面将模型部署上线之后进行服务测试的操作步骤。 模型部署完成后,您可输入代码进行测试。在“自动学习”页面,在服务部署节点,单击“实例详情”进入“在线服务”界面,在“预测”页签的“预测代码”区域,输入调试代码。

  • 蛋白质适应度预测与自回归transformers和推理时间检索

    题,并显示出最终弥合性能差距的潜力。我们引入了Tranception,一种新颖的transformer 架构,利用自回归预测和同源序列的检索来实现最先进的适应度预测性能。鉴于其在多个突变体上的显著更高的性能,对浅对齐的鲁棒性和评分索引的能力,我们的方法提供了比现有方法的显著增益范

    作者: 可爱又积极
    441
    4
  • 深度学习模型优化

    项目实习生 深度学习模型优化 深度学习模型优化 领域方向:人工智能 工作地点: 深圳 深度学习模型优化 人工智能 深圳 项目简介 为AI类应用深度学习模型研发优化技术,包括神经网络结构设计,NAS搜索算法,训练算法优化,AI模型编译优化等。 岗位职责 负责调研深度学习模型优化技术

  • Python中LSTM回归神经网络的时间序列预测

    把函数f依次作用在list的每个元素上,得到一个新的object并返回 ''' 接着我们进行数据集的创建,我们想通过前面几个月的流量来预测当月的流量, 比如我们希望通过前两个月的流量来预测当月的流量,我们可以将前两个月的流量 当做输入,当月的流量当做输出。同时我们需要将我们的数据集分为训练集和测试 集

    作者: 代码的路
    发表时间: 2023-01-11 08:23:28
    79
    0
  • 深度学习:线性回归从零开始实现

    {float(train_l.mean()):f}') 二、简单实现 在过去的几年里,出于对深度学习强烈的兴趣, 许多公司、学者和业余爱好者开发了各种成熟的开源框架。 这些框架可以自动化基于梯度的学习算法中重复性的工作。 1.生成数据集 import numpy as np import

    作者: 是Dream呀
    发表时间: 2024-07-18 13:22:17
    46
    0