已找到以下 10000 条记录

AI平台ModelArts

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
AI平台ModelArts
ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。
  • 深度学习—线性回归预测销售额

    进行程序训练之前,需已经成功安装好深度学习环境 若没有安装环境,可以参考:深度学习环境安装教程,进行环境安装。 一、 简介 机器学习是人工智能的核心,是使计算机具有智能的根本途径。线性回归模型是机器学习中最简单、最基础的一类有监督学习模型,却是很多复杂模型的基础。 可以用线性回归模型来预测销售额。 1

    作者: magize
    发表时间: 2023-05-12 18:54:23
    16
    0
  • PyTorch深度学习实战 | 预测工资——线性回归

    b) 5●让预测更精确 通过上面的实验可以看到,实际预测的收入和真实收入总是有或大或小的差距,这条线只是代表了整体预测的误差最小的情况。那么使预测更加精确就是训练模型并进行调优的目标。 在上面的模型中,只使用了一个特征值{年限}。这种使用一个特征去拟合另一个特征的回归,称之为一元

    作者: TiAmoZhang
    发表时间: 2023-04-03 10:07:21
    220
    0
  • 机器学习算法(一): 基于逻辑回归的分类预测

    机器学习算法(一): 基于逻辑回归的分类预测 项目链接参考fork一下直接运行:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 1 逻辑回归的介绍和应用 1.1 逻辑回归的介绍 逻辑回归(Logistic

    作者: 汀丶
    发表时间: 2023-03-22 10:36:50
    320
    0
  • 使用自动学习实现预测分析 - AI开发平台ModelArts

    使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发

  • 深度学习模型预测 - 数据湖探索 DLI

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。

  • 深度学习入门,keras实现回归模型

    在本教程中,您将学习如何使用 Keras 和深度学习执行回归。 您将学习如何训练 Keras 神经网络进行回归和连续值预测,特别是在房价预测的背景下。 今天的帖子开始了关于深度学习回归和连续值预测的 3 部分系列。 我们将在房价预测的背景下研究 Keras 回归预测: 第 1

    作者: AI浩
    发表时间: 2021-12-22 14:43:35
    1173
    0
  • 深度学习之最近邻回归

    也可以将参数学习算法嵌入另一个依所需增加参数数目的算法来创建非参数学习算法。例如,我们可以想象一个算法,外层循环调整多项式的次数,内存循环通过线性回归学习模型。理想模型假设我们能够预先知道生成数据的真实概率分布。然而这样的模型仍然会在很多问题上发生一些错误,因为分布中仍然会有一些噪扰。在监督学习中,从x

    作者: 小强鼓掌
    825
    2
  • 【ORELM回归预测】基于matlab离群鲁棒极限学习机ORELM回归预测【含Matlab源码 1441期】

    一、ORELM简介 理论知识参考:基于MRMR的ORELM的短期风速预测 二、部分源代码 clear all;clc; addpath(genpath('./.')); %rng('default');

    作者: 海神之光
    发表时间: 2022-05-28 16:58:02
    241
    0
  • 【实验课程】汽车里程数回归预测实验

    实验介绍简介本实验主要内容是进行汽车油耗里程数的预测,用到的框架主要包括:MindSpore0.5.0,主要用于深度学习算法的构建,本实验以开源的auto-mpg数据集为基础,基于MindSpore0.5.0深度学习库应用全连接神经网络进行汽车里程数预测。实验目的本实验是完成了一项回归任务。所以,本实验的重

    作者: NengjinZheng
    4409
    3
  • 机器学习实践之各种回归算法的房价预测对比(实验)

    机器学习实践之各种回归算法的房价预测对比 1.实验目的 1)强化对回归问题的理解 2)掌握回归算法的应用 2.实验要求 1)样本数据分析与处理 https://www.kaggle.com/harlfoxem/housesalesprediction?select=kc_house_data

    作者: 考过IE励志当攻城狮
    发表时间: 2021-06-19 03:34:08
    4471
    0
  • LightGBM回归预测实战

    'metric':'rmse', # 评估指标 'learning_rate':0.1, # 学习率 'max_depth':15, # 树的深度 'num_leaves':20, # 叶子数 } # 创建模型对象 model = lgb.train(params=params

    作者: 三斤
    发表时间: 2022-05-23 05:07:28
    371
    0
  • 华为云位居中国预测分析和机器学习厂商领导者象限

    报告指出,2018年以来,华为云积极升级预测分析和机器学习解决方案,不仅提供AI开发平台ModelArts用于机器学习模型训练和推理,同时集成了开源深度学习框架MindSpore,以及Ascend产品组合。此外,华为云还为用户提供云上和边缘设备上一致的模型开发和部署体验。

  • 【CNN回归预测】基于matlab鲸鱼算法优化CNN回归预测【含Matlab源码 1453期】

    在处理图像的CNN中,输入层一般代表了一张图片的像素矩阵。可以用三维矩阵代表一张图片。三维矩阵的长和宽代表了图像的大小,而三维矩阵的深度代表了图像的色彩通道。比如黑白图片的深度为1,而在RGB色彩模式下,图像的深度为3。 3.2 卷积层(Convolution Layer) 卷积层是CNN最重要的部分。它与传统

    作者: 海神之光
    发表时间: 2022-05-29 15:42:35
    359
    0
  • 深度学习之逻辑回归

    = σ(θ⊤x).       这个方法被称为逻辑回归 (logistic regression),名字有点奇怪,因为该模型用于分类,而非回归。       线性回归中,我们能够通过求解正规方程以找到最佳权重。相比而言,逻辑回归会更困难些。其最佳权重没有闭解。反之,我们必须最大化

    作者: 小强鼓掌
    731
    3
  • 【LSTM回归预测】基于matlab灰狼算法优化LSTM回归预测【含Matlab源码 2038期】

    ‘training-progress’); % 学习率 %% 训练LSTM net = trainNetwork(inputn,outputn,layers,options); %% 预测 net = resetState(net);% 网络的更新状态可能对分类产生了负面影响。重置网络状态并再次预测序列。 %将预测值与测试数据进行比较。

    作者: 海神之光
    发表时间: 2022-08-17 16:27:35
    221
    0
  • 【LSSVM回归预测】基于matlab蝙蝠算法优化LSSVM回归预测【含Matlab源码 109期】

    disp(['灰狼优化算法优化svm预测误差=',num2str(D)]) % figure % plot(test_predict,':og') % hold on % plot(test_y,'- *') % legend('预测输出','期望输出') % title('网络预测输出','fontsize'

    作者: 海神之光
    发表时间: 2022-05-28 20:38:47
    407
    0
  • 【SVM回归预测】基于matlab鲸鱼算法优化SVM回归预测【含Matlab源码 1377期】

    胞使我们人类有别于其他生物。鲸鱼的这些细胞数量是成年人的两倍,这是它们具有高度智慧和更富情感的主要原因。已经证明,鲸鱼可以像人类一样思考、学习、判断、交流,甚至变得情绪化,但显然,这都只是在一个很低的智能水平上。据观察,鲸鱼(主要是虎鲸)也能发展自己的方言。 另一个有趣的点是关于

    作者: 海神之光
    发表时间: 2022-05-28 16:58:50
    217
    0
  • 回归预测燃油效率

    回归预测燃油效率 在一个回归问题中,我们的目标是预测一个连续值的输出,比如价格或概率。这与一个分类问题形成对比,我们的目标是从一系列类中选择一个类(例如,一张图片包含一个苹果或一个橘子,识别图片中的水果)。 本笔记本使用经典的[auto-mpg](https://archive

    作者: 毛利
    发表时间: 2021-07-14 23:43:23
    808
    0
  • 数学建模学习(70):CatBoost回归分类预测模型

    本案例使用 CatBoost 创建一个员工流失模型,该模型将预测您哪些员工将在提交辞职信之前辞职。 在人力资源分析领域,数据科学家现在正在使用其人力资源部门的员工数据来预测员工流失率。预测员工流失的技术与零售商用于预测客户流失的技术非常相似。 在这个项目中,我将向您展示如何使用

    作者: 川川菜鸟
    发表时间: 2022-05-18 15:33:55
    265
    0
  • 【ELM回归预测】基于matlab粒子群算法优化ELM回归预测【含Matlab源码 036期】

    单隐层前馈神经网络(SLFNs),在保证学习精度的前提下比传统的学习算法速度更快。 2.3 极限学习机原理 ELM是一种新型的快速学习算法,对于单隐层神经网络,ELM可以随机初始化输入权重和偏置并得到相应的输出权重。 单隐层神经网络学习的目标是使得输出的误差最小,可以表示为

    作者: 海神之光
    发表时间: 2022-05-28 20:38:27
    221
    0
  • 【ELM回归预测】基于matlab粒子群算法优化ELM回归预测【含Matlab源码 1722期】

    一、粒子群算法优化极限学习机ELM简介 PSO-ELM优化算法预测模型 ELM模型在训练之前可以随机产生ω和b, 只需要确定隐含层神经元个数及隐含层神经元激活函数, 即可实现ELM预测模型的构建。在ELM模型的构建中, 只需确定初始ω和b, 而无需复杂的参数设置, 具有学习速度快、泛化性能好等优点。然而在发动机参数预测过程中

    作者: 海神之光
    发表时间: 2022-05-28 17:18:29
    229
    0
  • 【ELMAN回归预测】基于matlab灰狼算法优化ELMAN回归预测【含Matlab源码 1782期】

    一、获取代码方式 获取代码方式1: 完整代码已上传我的资源:【回归预测】基于matlab灰狼算法优化ELMAN神经网络回归预测【含Matlab源码 1782期】 获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

    作者: 海神之光
    发表时间: 2022-05-28 15:19:07
    252
    0
  • 深度学习模型预测 - 数据湖探索 DLI

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。

  • 【CNN回归预测】基于matlab麻雀算法优化CNN回归预测【含Matlab源码 282期】

    分析[M].清华大学出版社,2018. [6]魏鹏飞,樊小朝,史瑞静,王维庆,程志江.基于改进麻雀搜索算法优化支持向量机的短期光伏发电功率预测[J].热力发电. 2021,50(12)

    作者: 海神之光
    发表时间: 2022-05-28 16:34:12
    220
    0