检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
初始化方法 模型参数的初始化方法。 normal:正态分布 平均值:默认0 标准差:0.001 uniform :均匀分布 最小值:默认-0.001,均匀分布的最小值,必须小于最大值。 最大值:默认0.001,均匀分布的最大值,必须大于最小值。 xavier: 初始化初始值为 均值为0,方差为
Postman界面 在Postman界面填写参数。 选择POST任务,将通过获取预测接口获取的调用地址复制到POST后面的方框。Headers页签的“KEY”值填写为“X-Auth-Token”,“VALUE”值为您获取到的Token(关于如何获取token,请参考获取用户Token),如图5所示。
程将对应的数据写入到画像中,同时用于排序训练和线上推理服务中使用。 文件数据信息请参见全局特征信息文件数据格式。 当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 数据源 数据在OBS的存放路径。 “初始格式”:包括离
black_list:客体需要过滤的黑名单。 range:选定一个数值型属性(label),输出的候选集该值必须大于等于设定的值才不会被过滤掉。 category:选定一个字符串或字符串数组类型属性(label),输出的候选集该值必须包含或等于设定的值才不会被过滤掉。 sort_info 搜索的排序信息。
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
trace_id 是 String 消息追踪ID,标识本次请求的推荐结果。 rec_num 是 Integer 返回的结果数量。 user_id 是 String 用户ID content 是 List 请参见表4,推荐物品的内容。 表4 content参数说明 参数名称 是否必选 参数类型
列表中的条目将会被排除在最终返回的候选集之外。 filter_items 否 List 由itemid组成的List。在线黑名单列表,列表中的物品将不会在返回的推荐候选集中。 online_tags 否 List 由属性、属性值和属性权重组成的数据格式的列表,其中属性值或属性权
gmoid激活函数将输出值映射到[0,1]之间,是机器学习领域里常用的二分类算法。LR算法参数请参见逻辑斯蒂回归。 因子分解机算法是一种基于矩阵分解的机器学习算法,能够自动进行二阶特征组合、学习特征之间的关系,无需人工经验干预,同时能够解决组合特征稀疏的问题。FM算法参数请参见因子分解机。
001,均匀分布的最小值,必须小于最大值。 最大值:默认0.001,均匀分布的最大值,必须大于最小值。 xavier: 初始化初始值为 均值为0,方差为 Var(wi)=1/nin 的均匀分布(高斯或者随机分布)。其中 nin 是该神经元的输入数目。 优化器类型 grad:梯度下降算法
分数时综合排序相关得分的权重值。 融合方式:当同时选择点击率预估和综合排序进行重排序时,汇总分数时的统计方式。根据数值属性的大小顺序(ORDER)或者绝对值进行权重累加(ABS)统计。 高级类型选项 打散 打散是指推荐的结果集中根据客体的选择的字符串类型的属性进行打散,避免推荐结果集过于集中,增加推荐结果的新颖性。
最小在线并发规格支持弹性伸缩,是否设置最小规格即可? 目前推荐系统支持的默认在线并发规格为5。由于伸缩资源有一定的时延导致预测接口出现变慢的情况,因此在可预见的并发规格中,建议填写实际并发的规格,推荐系统后台会根据并发规格提前预留好资源,避免峰值的到来。 如果需要更多的规格,请您提工单联系工程师解决。 父主题:
RES+媒资应用场景 场景描述 媒资推荐场景中,通常对实时性要求比较高,用户产生的行为需要得到即时的反馈,同时结合用户的长期兴趣和短期兴趣进行个性化推荐。 RES提供一站式媒资推荐解决方案,支持针对行为数据实时生成用户的兴趣标签,提供离线、近线、在线三层计算,完成千人千面的个性化媒资推荐。
topK 用户最感兴趣的排序在前K个的物品。 行为 行为类型:用户感兴趣的行为类型。 权重值:行为的初始权重。 衰减系数:用于衰减行为初始权重的系数。 有效时间:用户配置的行为发生时间与当前时间的间隔,以小时为单位。系统只处理在该时间范围内的行为记录。 基于用户相似度的实时召回 基于用
智能场景简介 针对对应的场景,由RES根据场景类型预置好对应的智能算法,为匹配的场景提供智能推荐服务。 智能场景功能说明 表1 功能说明 功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习
Service,简称OBS)存储RES的推荐数据源,实现安全、高可靠和低成本的存储需求。OBS的更多信息请参见《对象存储服务文档》。 数据接入服务 数据接入服务(Data Ingestion Service,简称DIS)提供推荐数据源的实时日志。DIS的更多信息请参见《数据接入服务文档》。
UserCF算法生成的用户-物品列表候选集。 基于交替最小二乘的矩阵分解推荐 基于交替最小二乘的矩阵分解推荐:基于用户-物品的行为信息作为原始矩阵,利用ALS优化算法对原始矩阵进行矩阵分解,分解之后的用户隐向量矩阵和物品隐向量矩阵可以用来生成预估的新的用户-物品评分矩阵,提取出评分最高的若干个物品作为召回结果。
在特征工程、在线模块,近线模块时都会用到该全局的特征信息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features Array[Object] 用户特征,值为数组,其元素为json对象,参见表2。
Service,简称OBS)存储RES的推荐数据源,实现安全、高可靠和低成本的存储需求。OBS的更多信息请参见《对象存储服务文档》。 数据接入服务 数据接入服务(Data Ingestion Service,简称DIS)提供推荐数据源的实时日志。DIS的更多信息请参见《数据接入服务文档》。
特征过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。 特征工程 特征工程常用于对原始数据进行特征挖掘的处理,形成的结果用于排序策略的训练。 排序策略 排序策略利用CTR预估或综合性计算的算法给候选集做打分。 在线服务 在线服务应用于做线上推荐,每个服务之间是独立的。即根据不同的离线计算得到的候选集以及相关参数,提供不同的推荐服务。