检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
描述 offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 表6 jobConfig 参数 是否必选 参数类型 描述 n
描述 offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 表5 jobConfig 参数 是否必选 参数类型 描述 n
参数 参数类型 描述 offline String 离线计算规格。 nearline String 实时计算规格。 rank String 深度学习计算规格。 online_tps Integer 在线服务最大并发数。 表10 jobs 参数 参数类型 描述 category String
场景式推荐 提供多维度的场景推荐,含猜你喜欢、关联推荐、热门推荐,一键式操作,降低客户接入门槛。 近线处理能力 支持实时数据的接入和更新、模型在线学习,近线处理实时训练兴趣模型。 全面的推荐实体 支持以用户推荐物品、以用户推荐用户、以物品推荐物品、以物品推荐用户四种全面的推荐对象,用户根据场景选择不同的推荐实体。
优化策略相关参数 优化器类型:ftrl。适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。
Native Lives Kubernetes系列课程,带你走进云原生技术的核心 GO语言深入之道 介绍几个Go语言及相关开源框架的插件机制 跟唐老师学习云网络 唐老师将自己对网络的理解分享给大家 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为
避免物品重复推荐(曝光过滤) 本实践介绍用户在客户端浏览、点击过的某些商品,在规定的时间内,重复请求推荐接口,不会被再次推荐。 功能说明 该功能使用涉及两部分:实时行为数据的接入和在线服务配置行为过滤。当数据源部分开启近线行为实时接入之后,并且用户通过上传实时行为数据,系统才具备
过滤规则 过滤规则用于配置候选集的过滤方式,使之不进入候选集。对于每个需要过滤的行为,生成用户具有该行为的物品的列表。再对同用户的每种行为的物品列表进行“与”或者“或”的关系,最终生成用户-物品过滤表。 表1 过滤规则参数说明 参数名称 说明 名称 自定义过滤规则名称。由中文、英
正常使用排序策略。 各个策略的详细参数设置和输入输出请单击下方链接查看。 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM 核函数特征交互神经网络-PIN 在“创建组合作业”页面,配置完过滤规则参数之后,进入“排序策略”页签,如图3
召回策略 召回是指对大量的物品做初选,为每一个用户形成个性化侯选集。召回策略中内置了多种召回方式,用户可根据自己场景选择。召回策略对应流程请参见图1。 图1 召回策略 推荐系统支持的召回方式有: 基于特定行为热度推荐 基于综合行为热度推荐 基于物品的协同过滤推荐 基于用户的协同过滤推荐
优化器类型。现仅提供一种字段。 ftrl:指定为使用ftrl优化器。 initial_accumulator_value 是 Double 用来动态调整学习步长。取值范围(0,1],默认值为0.1。 lambda1 是 Double 叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。取值范围[0
关联推荐的主要应用场景是什么? 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 父主题: 智能场景
实时日志 RES根据实时发送到DIS上的日志,进行数据计算和处理,更新用户的相关数据。用户发送到DIS上的数据具体如下: 实时行为日志 实时行为日志的作用包括: 更新用户的兴趣标签。 记录所选行为类型的历史记录。 更新用户的上下文信息。 召回候选集。 表1 实时行为日志字段描述 字段名
略-近线特征工程中创建完成后才可以正常使用排序策略。 在“创建自定义场景”页面,进入“排序策略”页签,单击“添加近线排序策略”。 进行在线学习参数配置。 名称:自定义在线排序策略名称。 离线排序策略:从下拉框中选择已经创建完成的排序策略-离线排序策略作业名称。 优化器类型:具体参数解释请参见Logistic
RES的离线数据源包括什么? 离线数据包括如下几张表: 用户属性表 物品属性表 用户操作行为表 每张表的字段描述和规范详情请参见《推荐系统用户指南》中准备离线数据源章节。 父主题: 数据源
数据导入 数据导入介绍 数据导入即读取经过“数据结构”生成的数据,对每条数据进行校验。推荐系统保留字段需校验类型和数据合法性、自定义字段校验类型,输出错误报告。如果数据完全符合要求,会生成推荐系统所需要的宽表和画像数据。 宽表:推荐系统内部格式,以行为数据为主,将行为数据中涉及到的用户数据和物品数据整合成一条数据。
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double
Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double