已找到以下 10000 条记录
  • 华为云深度学习

    群和0.8的线性加速比,原先一个月的模型训练时间,现在1小时搞定机会难得,小伙伴们还不抓紧来体验,数量有限,先到先得哦!!点击访问华为云深度学习官网

    作者: 斑馬斑馬
    330
    0
  • 深度学习的现实应用

    语言翻译知之甚少的深度学习研究人员正提出相对简单的机器学习解决方案,来打败世界上最好的专家语言翻译系统。文本翻译可以在没有序列预处理的情况下进行,它允许算法学习文字与指向语言之间的关系。谷歌翻译利用的是大型递归神经网络的堆叠网络。四、自动驾驶汽车谷歌利用深度学习算法使自动驾驶汽车

    作者: 运气男孩
    831
    4
  • 【开源模型学习】AlexNet深度学习模型总结

    复训练,选取出合适的a,LReLU的表现出的结果才比ReLU好。因此有人提出了一种自适应地从数据中学习参数的PReLU。PReLU是LeakyRelu的改进,可以自适应地从数据中学习参数。PReLU具有收敛速度快、错误率低的特点。PReLU可以用于反向传播的训练,可以与其他层同时优化。2

    作者: 小二中二大二
    1653
    0
  • 深度学习之浅层网络

    存在一些函数族能够在网络的深度大于某个值 d 时被高效地近似,而当深度被限制到小于或等于 d 时需要一个远远大于之前的模型。在很多情况下,浅层模型所需的隐藏单元的数量是 n 的指数级。这个结果最初被证明是在那些不与连续可微的神经网络类似的机器学习模型中出现,但现在已经扩展到了这些模型。第一个结果是关于逻辑门电路的

    作者: 小强鼓掌
    840
    1
  • 深度学习概述

    少正则化参数;使用非线性模型,比如核SVM、决策树、深度学习等模型;调整模型的容量(capacity),通俗地,模型的容量是指其拟合各种函数的能力;容量低的模型可能很难拟合训练;使用集成学习方法,如Bagging,将多个弱学习器Bagging。 产生过拟合的具体原因数据噪声干扰过

    作者: 大鹏爱学习
    发表时间: 2022-10-17 10:07:38
    961
    0
  • 创建纵向联邦学习作业 - 可信智能计算服务 TICS

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

  • 深度学习的特点

    深度学习区别于传统的浅层学习深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,

    作者: QGS
    667
    2
  • 深度学习笔记之应用

          深度学习对语音识别产生了巨大影响。语音识别在 20 世纪 90 年代得到提高后,直到约 2000 年都停滞不前。深度学习的引入 (Dahl et al., 2010; Deng et al.,2010b; Seide et al., 2011; Hinton et al

    作者: 小强鼓掌
    623
    0
  • 深度学习是机器学习的一种

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    531
    1
  • 深度学习的模型介绍

    深度神经网络:深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络 (RNTN)、自动编码器 (AutoEncoder)、生成对抗网络

    作者: 极客潇
    1759
    2
  • 深度学习服务_访问服务

    本视频分2部分介绍如何访问华为云深度学习服务,包括获取访问密钥和登录管理控制台。

    播放量  16210
  • 深度学习和层级结构

    语言有着层级结构,大的结构部件是由小部件递归构成的。但是,当前大多数基于深度学习的语言模型都将句子视为词的序列。在遇到陌生的句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子的递归结构,深度学习学到的各组特征之间的关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现

    作者: 初学者7000
    634
    1
  • 云硬盘EVS - 资源与学习

    资源与工具 API 了解API的描述、语法、参数说明及样例等内容 SDK 了解如何获取、安装和调用华为云SDK EVS云小课 带您快速了解并学习购买共享云硬盘 云硬盘论坛 行业资讯、干货分享等一系列内容 博客 汇聚精品内容,云集技术大咖 增值服务 增值服务 支持计划 7*24小时全产品技术支持

  • AI前沿——深度学习技术

    算法,人类终于找到了如何处理“抽象概念”这个亘古难题的方法。机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构市值不断改善自身的性能的学科,简单地说,机器学习就是通过算法,使得机器能从大量的历史数据中学习规律,从而对新的样本做智能

    作者: 运气男孩
    431
    2
  • 深度学习之图像识别:核心技术与案例实战》 ——3.3 数据增强

    yi)+(1-λ)(xj,yj) (3.2)  λ的取值范围介于0~1。提出mixup方法的研究者们做了个丰富的实验,实验结果表明可以改进深度学习模型在ImageNet数据集、CIFAR数据集、语音数据集和表格数据集中的泛化误差,降低模型对已损坏标签的记忆,增强模型对对抗样本的鲁棒

    作者: 华章计算机
    发表时间: 2020-02-23 13:39:45
    11124
    0
  • 深度学习之经验E

    什么品种,其**有三个不同的品种。        无监督学习算法(unsupervised learning algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式

    作者: 小强鼓掌
    1060
    4
  • 深度学习之图像识别:核心技术与案例实战》 ——2.1.3 PyTorch简介

    2.1.3 PyTorch简介  Torch是纽约大学的一个机器学习开源框架,几年前在学术界曾非常流行。但是由于其初始只支持Lua语言,导致应用范围没有普及。后来随着Python的生态越来越完善,Facebook人工智能研究院推出了Pytorch并开源。  PyTorch不是简单

    作者: 华章计算机
    发表时间: 2020-02-23 12:01:45
    5890
    0
  • 深度学习之图像识别核心技术与案例实战》—3.3 数据增强

    yi)+(1-λ)(xj,yj) (3.2)  λ的取值范围介于0~1。提出mixup方法的研究者们做了个丰富的实验,实验结果表明可以改进深度学习模型在ImageNet数据集、CIFAR数据集、语音数据集和表格数据集中的泛化误差,降低模型对已损坏标签的记忆,增强模型对对抗样本的鲁棒

    作者: 华章计算机
    发表时间: 2019-06-02 00:29:18
    3906
    0
  • 深度学习入门》笔记 - 26

    欠拟合、过拟合的总结如下:接下来是TensorFlow框架部分,之前有个帖子 基于TensorFlow 2建立深度学习的模型 - 快速入门 cid:link_0然后会使用它来建立线性回归模型和神经网络分类模型敬请期待

    作者: 黄生
    48
    2
  • 深度学习之经验风险

    机器学习算法的目标是降低式 (8.2) 所示的期望泛化误差。这个数据量被称为风险(risk)。在这里,我们强调该期望取自真实的潜在分布 pdata。如果我们知道了真实分布 pdata(x, y),那么最小化风险变成了一个可以被优化算法解决的优化问题。然而,我们遇到的机器学习问题,通常是不知道

    作者: 小强鼓掌
    627
    2