已找到以下 10000 条记录
  • 深度学习笔记之理解

            我们今天知道的一些最早的学习算法,是旨在模拟生物学习的计算模型,即大脑怎样学习或为什么能学习的模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他

    作者: 小强鼓掌
    826
    2
  • 深度学习之图像识别核心技术与案例实战》—2.1.2 TensorFlow简介

    2.1.2 TensorFlow简介  TensorFlow是Google brain推出的开源机器学习库,与Caffe一样,主要用于深度学习的相关任务。与Caffe相比,TensorFlow的安装简单很多,一个pip命令就可以解决,新手也不会误入各种“坑”。  TensorFl

    作者: 华章计算机
    发表时间: 2019-06-01 23:40:04
    6192
    0
  • 机器学习(八):深度学习简介

    深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

    作者: Lansonli
    发表时间: 2023-02-18 06:02:17
    62
    0
  •   关于迁移学习核心技术开发与应用的进修计划

    深入了解神经网络的组成、训练和实现,掌握深度空间特征分布等关键概念;  2.掌握迁移学习的思想与基本形式,了解传统迁移学习的基本方法,对比各种方法的优缺点;  3.握深度迁移学习的思想与组成模块,学习深度迁移学习的各种方法;  4.掌握深度迁移学习的网络结构设计、目标函数设计的前沿方法,了解迁移学习在PDA、Source-Free

    作者: 人工智能君
    18
    0
  • 深度学习核心技术精讲100篇(七十四)-教你如何最快入门用户画像

    tableau可视化数据分析高级教程 python快速学习实战应用系列课程 用户画像的应用     用户画像是目前数据挖掘当中比较容易入门的一个领域。它比较热门的应用便是推荐,最近常说的千人千面的核心基础便是构建人群的画像,通过人群的不同画像来做到个

    作者: 格图洛书
    发表时间: 2021-11-18 15:53:29
    877
    0
  • 深度学习之机器学习的算法效果

            当我们使用机器学习算法时,我们不会提前固定参数,然后从数据集中采样。我们会在训练集上采样,然后挑选参数去降低训练集误差,然后再在测试集上采样。在这个过程中,测试误差期望会大于或等于训练误差期望。以下是决定机器学习算法效果是否好的因素:        1. 降低训练误差 

    作者: 小强鼓掌
    725
    3
  • 深度学习之图像识别:核心技术与案例实战》 ——2.1.2 TensorFlow简介

    2.1.2 TensorFlow简介  TensorFlow是Google brain推出的开源机器学习库,与Caffe一样,主要用于深度学习的相关任务。与Caffe相比,TensorFlow的安装简单很多,一个pip命令就可以解决,新手也不会误入各种“坑”。  TensorFl

    作者: 华章计算机
    发表时间: 2020-02-23 11:58:40
    5769
    0
  • 强化学习算法工程师

    代开发;解决强化学习算法落地过程中遇到的各种问题。 岗位要求 1、计算机、人工智能、自动控制、模式识别等相关专业的博士; 2、在以下(深度)强化学习领域有一定积累:模仿学习、多智能体学习、分布式强化学习、迁移和多任务、分层和元学习等; 3、在领域内顶级会议和期刊发表过优秀论文,N

  • 深度学习深度模型中的优化

    深度学习算法在许多情况下都涉及到优化。例如,模型中的进行推断(如 PCA)涉及到求解优化问题。我们经常使用解析优化去证明或设计算法。在深度学习涉及到的诸多优化问题中,最难的是神经网络训练。甚至是用几百台机器投入几天到几个月来解决单个神经网络训练问题,也是很常见的。因为这其中的优化

    作者: 小强鼓掌
    337
    1
  • 班级学习路径

    9门课程,122课时 立即学习 大数据学习路径 在学习数据库原理和应用的基础上,进一步学习大数据的架构和治理等原理 2个学习阶段,5门课程,78课时 立即学习 开发与运维学习路径 学生以零门槛的方式,快速学习低代码开发,并深入了解DevOps敏捷开发 2个学习阶段,2门课程,36课时 立即学习 鸿蒙物联网学习路径

  • 深度学习之平滑先验

    用于度量测试样本 x 和每个训练样本 x(i) 有多么相似。近年来深度学习的很多推动力源自研究局部模版匹配的局限性,以及深度学习如何克服这些局限性 (Bengio et al., 2006a)。决策树也有平滑学习的局限性,因为它将输入空间分成和叶节点一样多的区间,并在每个区间使用

    作者: 小强鼓掌
    1194
    1
  • 深度学习之经验E

    learning algorithm) 训练含有很多特征的数据集,然后学习出这个数据集上有用的结构性质。在深度学习中,我们通常要学习生成数据集的整个概率分布,显式地,比如密度估计,或是隐式地,比如合成或去噪。还有一些其他类型的无监督学习任务,例如聚类,将数据集分成相似样本的集合。

    作者: 小强鼓掌
    1164
    3
  • 学习

    华为云助力爱学习 超低时延线上互动课堂,推动教育升级 华为云RTC实时音视频服务帮助爱学习快速构建了全场景、全互动、全实时的视频能力。 背景介绍 爱学习教育集团是在线教育ToB赛道的领头羊。目前,爱学习合作机构已覆盖全国31个省市自治区的1600多个县市,拥有20000余家合作机构,累计服务学员超2500万人。

  • 深度学习训练过程

    一步类似神经网络的随机初始化初值过程,由于第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果。所以深度学习的良好效果在很大程度上归功于第一步的特征学习的过程。

    作者: QGS
    1051
    3
  • 机器学习——深度学习(Deep Learning)

    Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。 Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,

    作者: 格图洛书
    发表时间: 2021-12-29 16:20:46
    631
    0
  • 深度学习入门》笔记 - 07

    些偏导数等于零,解方程得到b和w的估计值。但是这个方法只适合少数结构比较简单的模型(比如线性回归模型),不能求解深度学习这类复杂模型的参数。 所以下面介绍的是深度学习中常用的优化算法:`梯度下降法`。其中有三个不同的变体:随机梯度下降法、全数据梯度下降法、和批量随机梯度下降法。

    作者: 黄生
    155
    2
  • 深度学习核心技术精讲100篇(五十五)-深度解读分布式定时任务框架

    前言   我们先思考下面几个业务场景的解决方案: 支付系统每天凌晨1点跑批,进行一天清算,每月1号进行上个月清算 电商整点抢购,商品价格8点整开始优惠 12306购票系统,超过30分钟没有成功支付订单的,进行回收处理

    作者: 格图洛书
    发表时间: 2022-01-04 14:11:41
    716
    0
  • 深度学习替代职业

    科技公司通过基于GAN的深度学习开发了一种名为“自动全身模型生成人工智能”的技术,他们完全是由人工智能虚拟而成,时尚品牌或广告代理商因而可以不用支付模特酬劳,也不用负担拍摄相关的人员、场地、灯光、设备、甚至是餐饮等成本,这意味着人工智能已经完全可以取代人类模特拍摄时尚宣传广告了。

    作者: 初学者7000
    958
    5
  • 深度学习基本概念

    们发现从数据的原始形式直接学得数据表示这件事很难。深度学习是目前最成功的表示学习方法,因此,目前国际表示学习大会(ICLR)的绝大部分论文都是关于深度学习的。深度学习是把表示学习的任务划分成几个小目标,先从数据的原始形式中先学习比较低级的表示,再从低级表示学得比较高级的表示。这样

    作者: 运气男孩
    973
    4
  • 深度学习之随机梯度下降

    几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降 (stochastic gradient descent, SGD)。随机梯度下降是第4.3节介绍的梯度下降算法的一个扩展。机器学习中的一个循环问题是大的数据集是好的泛化所必要的,但大的训练集的计算代价也更大。机器学

    作者: 小强鼓掌
    650
    1