检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
算模型,因而它们是纯计算驱动的深度学习模型的技术先驱。这些理论指出,大脑中的神经元组成了不同的层次,这些层次相互连接,形成一个过滤体系。在这些层次中,每层神经元在其所处的环境中获取一部分信息,经过处理后向更深的层级传递。这与后来的单纯与计算相关的深度神经网络模型相似。这一过程的结
可能具有过高的方差),k-折交叉验证算法可以用于估计学习算法 A 的泛化误差。数据集 D 包含的元素是抽象的样本 z(i) (对于第 i 个样本),在监督学习的情况代表(输入,目标)对 z(i) = (x(i), y(i)) ,或者无监督学习的情况下仅用于输入 z(i) = x(i)。该算法返回
2.1.3 PyTorch简介 Torch是纽约大学的一个机器学习开源框架,几年前在学术界曾非常流行。但是由于其初始只支持Lua语言,导致应用范围没有普及。后来随着Python的生态越来越完善,Facebook人工智能研究院推出了Pytorch并开源。 PyTorch不是简单
深度学习的另一个最大的成就是其在强化学习 (reinforcement learning) 领域的扩展。在强化学习中,一个自主的智能体必须在没有人类操作者指导的情况下,通过试错来学习执行任务。DeepMind 表明,基于深度学习的强化学习系统能够学会玩Atari 视频游戏,并在多种任务中可与人类匹敌
1847)。从 20 世纪 40 年代开始,这些函数近似技术被用于导出诸如感知机的机器学习模型。然而,最早的模型都是基于线性模型。来自包括 Marvin Minsky 的批评指出了线性模型族的几个缺陷,例如它无法学习 XOR 函数,这导致了对整个神经网络方法的抵制。
Transformers)模型,采用迁移学习和微调的方法,进一步刷新了深度学习方法在自然语言处理任务上的技术前沿。到目前为止,面向自然语言处理任务的深度学习架构仍在不断进化,与强化学习、无监督学习等的结合应该会带来效果更优的模型。1.3.4 其他领域深度学习在其他领域(如生物学、医疗和金融
性而无法抵抗对抗样本。神经网络能够将函数从接近线性转化为局部近似恒定,从而可以灵活地捕获到训练数据中的线性趋势同时学习抵抗局部扰动。对抗样本也提供了一种实现半监督学习的方法。在与数据集中的标签不相关联的点 x 处,模型本身为其分配一些标签 yˆ。模型的标记 yˆ 未必是真正的标签,但如果模型是高品质的,那么
者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer
云数据库 GaussDB 资源 核心代码100%自研,具备高可用、高性能、高安全、高弹性、高智能、易部署、易迁移等关键能力,是企业核心业务的坚实数据底座 核心代码100%自研,具备高可用、高性能、高安全、高弹性、高智能、易部署、易迁移等关键能力,是企业核心业务的坚实数据底座 购买 控制台
深度学习是通向人工智能的途径之一。具体来说,它是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。我们坚信机器学习可以构建出在复杂实际环境下运行的AI系统,并且是唯一切实可行的方法。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千
什么是神经网络 我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个文章中,我会说一些直观的基础知识。让我们从一个房价预测的例子开始说起。 假设你有一个数据集,它包含了六栋房子的信息。所以,你
为唯一输出)。与切面距离算法一样,我们根据切向量推导先验,通常从变换(如平移、旋转和缩放图像)的效果获得形式知识。正切传播不仅用于监督学习(Simard et al., 1992),还在强化学习(Thrun, 1995)中有所应用。正切传播与数据集增强密切相关。在这两种情况下,该算法的用户通过指定一组不
深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,
的梯度消失问题。tanh函数也有梯度消失问题。ReLU(Rectified Linear Unit)函数出现和流行的时间都比较晚,但却是深度学习常用的激活函数。它非常简单: ReLU(x)=max(x,0) 是一个折线函数,所有负的输入值都变换成0,所有非负的输入值,函数值都等于
aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model avera
当计算图变得极深时,神经网络优化算法会面临的另外一个难题就是长期依赖问题——由于变深的结构使模型丧失了学习到先前信息的能力,让优化变得极其困难。深层的计算图不仅存在于前馈网络,还存在于之后介绍的循环网络中(在第十章中描述)。因为循环网络要在很长时间序列的各个时刻重复应用相同操作来
说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物学考虑整流线性单元的导出。半整流非线性旨在描述生物神经元的这些性质:(1) 对于某些输入,生物神经元是完全不活跃的。(2)
说明,在深度整流网络中的学习比在激活函数具有曲率或两侧饱和的深度网络中的学习更容易。整流线性单元还具有历史意义,因为它们表明神经科学继续对深度学习算法的发展产生影响。Glorot et al. (2011a) 从生物学考虑整流线性单元的导出。半整流非线性旨在描述生物神经元的这些性质:(1) 对于某些输入,生物神经元是完全不活跃的。(2)
什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询
因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1