检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
一定的限度才会有所反应,并向后输出。这就好像你和一个小朋友好好说话,他却像没听到一样,而你揪着他的耳朵和他说的时候,他就能听进去,并在行动中能做到。于是根据这个又做了一个激活函数。常见的激活函数,一个是s型,S的腰是0.5还有一个修正线性单元激活函数简称为relu这个计算很简单,
时的网络就能够进行前向传播和反向传播计算了。可参考【MindSpore易点通】模型训练中的前向传播和反向传播终于圆上了!!!总结本次给大家分享了微分在深度学习中的应用,微分可用于神经网络训练中的优化问题,也可以求取可变参数在某一刻的瞬时值,也就是梯度。同时也引出了导数和偏导数用于
深度学习需要大量的数据集,但是现实是只有零星的数据,大家有什么收集数据的经验和经历,还有什么收集数据的好办法
一个输出通道。因为上图有5个类别,所以网络输出的通道数也为5,如下图所示:如上图所示,预测的结果可以通过对每个像素在深度上求argmax的方式被整合到一张分割图中。进而,我们可以轻松地通过重叠的方式观察到每个目标。argmax的方式也很好理解。如上图所示,每个通道只有0或1,以P
上一节训练不出结果,都是nan的原因找到了,就是因为特征数据没有做归一化,那归一化是个什么概念呢?这里有一个很好的例子,做一道菜,准备好材料鸭、笋、....盐、酱油...水,再加上烹饪火候,可以做出一道菜。上面做菜的每一个要素,都可以看做一个特征变量,而重量可以看做是特征变量的值,比如鸭肉xxg
要性质。它是消除数据中未知变动因素的简单表示实例。在PCA中,这个消除是通过寻找输入空间的一个旋转(由 W 确定),使得方差的主坐标和 z 相关的新表示空间的基对齐。虽然相关性是数据元素间依赖关系的一个重要范畴,但我们对于能够消除特征依赖更复杂形式的表示学习也很有兴趣。对此,我们需要比简单线性变换能做到更多的工具。
什么是深度?深度就是简单的量变。神经网络到深度神经网络,就是每一层的节点搞多一点,层数也搞多一点。但是如果说网络越深,节点越多,表现能力就越好,这个我看未必,过犹未及嘛深度神经网络本身没再多讲,讲的是卷积神经网络就是CNN。这个是在60年代的时候,在研究猫的神经元时发现的,199
虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果。动量的主要目的是解决两个问题:Hessian
入探讨迁移学习的基本概念、方法以及实际应用。 什么是迁移学习? 迁移学习是一种通过转移已学知识来解决新问题的学习方法。传统的深度学习模型通常从零开始训练,需要大量标注数据来学习数据的特征。然而,在许多实际应用中,我们往往面临以下挑战: 数据稀缺:在许多任务中,获得大量标注数据可能非常昂贵或耗时。
在学习AI之前,就非常好奇深度学习模型怎么就能学习到知识呢?好神奇啊,感觉它跟人一样,给它素材就能学好在学习了一段时间的AI理论基础之后,发现深度学习模型的学习跟人是不一样的,一句话来说,深度学习就是拟合数据的过程,给定数据、标签和损失函数(有时也称目标函数),然后根据损失值lo
= run_context.original_args() cur_epoch = cb_params.cur_epoch_num cur_step = (cur_epoch - 1) * 1118 + cb_params.cur_step_num
宇宙毁灭都不可能采样完所有的子网络。取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好的参数设定。这些是仅有的区别。除了这些,Dropout与Bagging算法一样。例如,每个子网络中遇到的训练集确实是替换采样的原始训练集的一个子集。Baggi
说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```
元的状态和参考值之间存在一定区别)进行一些修改。为了简单起见,我们在这里提出乘零的简单Dropout算法,但是它被简单修改后,可以与从网络中移除单元的其他操作结合使用。
正则化在深度学习的出现前就已经被使用了数十年。线性模型,如线性回归和逻辑回归可以使用简单、直接、有效的正则化策略。许多正则化方法通过对目标函数 J 添加一个参数范数惩罚 Ω(θ),限制模型(如神经网络、线性回归或逻辑回归)的学习能力。我们将正则化后的目标函数记为˜(θ; X, y)
这个房价预测的例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程的一些信息进行可视化。可视化是一件有意见的工作,有助于信息的理解和推广。可视化在modelarts的老版的训练作业下,是收费的,但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的
落了很长时间没学,捡起来继续。编号也忘了从哪里接上,就从20开始吧。 前面弄完了一元线性回归,现在是波士顿房价预测-多元线性回归。 数据方面,12+1共13个指标,506行数据。 前面12个是多个维度的数据,维度还是比较全面的,是输入值/特征。 比如:城镇人均犯罪率、师生比例、住宅比例、边界是否为河流等
终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。