已找到以下 10000 条记录
  • 深度学习应用开发》学习笔记-07

    还有一个是vggnet,他的问题是参数太大。深度学习的问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习的开发框架。先整了了Theano,开始于2007年的加拿大的蒙特利尔大学。随着ten

    作者: 黄生
    827
    2
  • 深度学习应用开发》学习笔记-02

    导论里面说了人工智能用来下围棋打游戏,已经完全超越了人类,但是那又怎么样呢?还能不能做点更有意义的事情?探索宇宙,非常有意义吧!通过人工智能在天量的天文探测数据挖掘到一个小版的**。然后回到我们日常的社会生活之中,语音处理,比如语音输入,生活助理,拨打广告推销电话等等。图像处理。还有计算机写新闻稿,

    作者: 黄生
    1353
    3
  • 深度学习——常用评价指标

    识别出来的图片中,True positives所占的比率。也就是本假设,所有被识别出来的飞机,真正的飞机所占的比例。    Recall 是测试集中所有正样本样例,被正确识别为正样本的比例。也就是本假设,被正确识别出来的飞机个数与测试集中所有真实飞机的个数的比值。    Precision-recall

    作者: QGS
    784
    3
  • 深度学习识别滑动验证码

    本节我们就来了解下使用深度学习识别滑动验证码的方法。 1. 准备工作 我们这次主要侧重于完成利用深度学习模型来识别验证码缺口的过程,所以不会侧重于讲解深度学习模型的算法,另外由于整个模型实现较为复杂

    作者: 崔庆才丨静觅
    发表时间: 2021-12-31 16:52:28
    945
    0
  • 深度学习应用开发》学习笔记-31

    y.uint8,uint8的取值范围是0-255, 这个可能就是所谓的256位图吧? 每张图片会有自己的标签,就是表示这张图片是数字0-9的哪个。 另外用reshape重整了一下图像,比较有趣 以下为Notebook代码 ```python print(train_images

    作者: 黄生
    520
    0
  • 深度学习的应用

    计算机视觉香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和DBN引入到语音识别声学模型训练,并且在

    作者: QGS
    657
    1
  • 深度学习的应用

    计算机视觉香港中文大学的多媒体实验室是最早应用深度学习进行计算机视觉研究的华人团队。在世界级人工智能竞赛LFW(大规模人脸识别竞赛)上,该实验室曾力压FaceBook夺得冠军,使得人工智能在该领域的识别能力首次超越真人。语音识别微软研究人员通过与hinton合作,首先将RBM和DBN引入到语音识别声学模型训练,并且在

    作者: QGS
    1525
    2
  • 深度学习之基于梯度的学习

    论上如此——在实践也很鲁棒但可能会遇到数值问题)。用于非凸损失函数的随机梯度下降没有这种收敛性保证,并且对参数的初始值很敏感。对于前馈神经网络,将所有的权重值初始化为小随机数是很重要的。偏置可以初始化为零或者小的正值。这种用于训练前馈神经网络以及几乎所有深度模型的迭代的基于梯度

    作者: 小强鼓掌
    833
    2
  • 深度学习随机取样、学习

    通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误

    作者: 运气男孩
    717
    0
  • 深度学习随机取样、学习

    通过选择合适的学习率,可以使梯度下降法得到更好的性能。学习率,即参数到达最优值过程的速度快慢,当你学习率过大,即下降的快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误

    作者: 运气男孩
    1444
    5
  • 深度学习之PCA

    要性质。它是消除数据未知变动因素的简单表示实例。在PCA,这个消除是通过寻找输入空间的一个旋转(由 W 确定),使得方差的主坐标和 z 相关的新表示空间的基对齐。虽然相关性是数据元素间依赖关系的一个重要范畴,但我们对于能够消除特征依赖更复杂形式的表示学习也很有兴趣。对此,我们需要比简单线性变换能做到更多的工具。

    作者: 小强鼓掌
    541
    1
  • “智能基座”产教融合协同育人基地

    力。 通过课后实践、创新实践课等,把知识转化为动手能力。 学练考证一站式学习 一站式服务:课程学习、沙箱实验、考试认证。 一站式服务:课程学习、沙箱实验、考试认证。 精选课程 体系化的培训课程,快速完成学习覆盖,让您轻松上云 鲲鹏主题课程 昇腾主题课程 《数据库》课程方案 1 方案介绍

  • 深度学习库 JAX

        JAX是一个似乎同时具备Pytorch和Tensorflow优势的深度学习框架。 JAX 是 Google Research 开发的机器学习库,被称为“在 GPU/TPU上运行的具有自动微分功能的Numpy”,该库的核心是类似 Numpy 的向量和矩阵运算。我个人认为,与

    作者: QGS
    7165
    3
  • 深度学习算法深度强化学习(Deep Reinforcement Learning)

    这一问题,引入了深度强化学习(Deep Reinforcement Learning)的概念。本文将介绍深度强化学习的基本概念、算法原理以及在实际应用的一些案例。 深度强化学习的基本概念 深度强化学习是将深度学习与强化学习相结合的一种方法。在深度强化学习,智能体通过与环境

    作者: 皮牙子抓饭
    发表时间: 2023-09-26 09:17:02
    67
    1
  • 深度学习之动量

    虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果。动量的主要目的是解决两个问题:Hessian

    作者: 小强鼓掌
    530
    3
  • 深度学习之机器学习的挑战

    论的是一个简单的优化问题。机器学习和优化不同的地方在于,我们也希望泛化误差(generalization error),也被称为测试误差(test error),很低。泛化误差被定义为新输入的误差期望。这里,期望取值自我们期望系统在现实从输入分布采样得到的不同可能值。通常,我

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习的挑战

    论的是一个简单的优化问题。机器学习和优化不同的地方在于,我们也希望泛化误差(generalization error),也被称为测试误差(test error),很低。泛化误差被定义为新输入的误差期望。这里,期望取值自我们期望系统在现实从输入分布采样得到的不同可能值。通常,我

    作者: 小强鼓掌
    516
    2
  • 深度学习介绍

    学习目标 目标 知道深度学习与机器学习的区别了解神经网络的结构组成知道深度学习效果特点 应用 无 1.1.1 区别   1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识深度学习通常由多个层

    作者: Lansonli
    发表时间: 2021-09-28 15:18:45
    1023
    0
  • 华为云开发者人工智能学习路线_开发者中心 -华为云

    【报名人数】3800人 开始学习 入门篇:人工智能开启新时代 本课程主要内容包括:人工智能发展历程及行业应用介绍,机器学习讲解及实操演示、AI应用学习方法介绍。 【课程大纲】 第1章 人工智能发展及应用 第2章 人工智能与机器学习 第3章 监督学习与非监督学习实例讲解 第4章 如何快速掌握AI应用的能力

  • 深度学习应用开发》学习笔记-32

    constant([3,9,22,60,8,9]) print(tf.argmax(A).numpy()) #二维数组 axis轴为0时,在每列取值最大者,结果长度为列数。 B=tf.constant([[3,20,33,99,11], [2,99,33,12,3], [14,90,1

    作者: 黄生
    1141
    3