检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
什么是神经网络 我们常常用深度学习这个术语来指训练神经网络的过程。有时它指的是特别大规模的神经网络训练。那么神经网络究竟是什么呢?在这个文章中,我会说一些直观的基础知识。让我们从一个房价预测的例子开始说起。 假设你有一个数据集,它包含了六栋房子的信息。所以,你
Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。
正则化是机器学习中非常重要并且非常有效的减少泛化误差的技术,特别是在深度学习模型中,由于其模型参数非常多非常容易产生过拟合。因此研究者也提出很多有效的技术防止过拟合,比较常用的技术包括:数据增强,参数范数惩罚,Dropout,提前终止,随机池化等等。 4.1过拟合 欠拟合与过拟合的概念
该API属于APIHub459服务,描述: 测算曲线的球面长度(海里接口URL: "/v1/utils/geog/line/length"
朋友们一定会遇到画函数曲线的问题吧!如果想快速准确地绘制一条函数曲线,可以借助EXCEL的图表功能,它能使你画的曲线既标准又漂亮。还可以将多个函数图像放入同一图表中进行对比。如下图就是在Excel中绘制的正、余弦函数图像: 一、准备数据 1、首先要根据函数表达式准备一组数据,然
机器学习算法的目标是降低式 (8.2) 所示的期望泛化误差。这个数据量被称为风险(risk)。在这里,我们强调该期望取自真实的潜在分布 pdata。如果我们知道了真实分布 pdata(x, y),那么最小化风险变成了一个可以被优化算法解决的优化问题。然而,我们遇到的机器学习问题,通常是不知道
循环次数内没有进一步改善时,算法就会终止。此过程在算法中有更正式的说明。这种策略被称为提前终止(early stopping)。这可能是深度学习中最常用的正则化形式。它的流行主要是因为有效性和简单性。
也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型
也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNN和LSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型
用于度量测试样本 x 和每个训练样本 x(i) 有多么相似。近年来深度学习的很多推动力源自研究局部模版匹配的局限性,以及深度学习如何克服这些局限性 (Bengio et al., 2006a)。决策树也有平滑学习的局限性,因为它将输入空间分成和叶节点一样多的区间,并在每个区间使用
正则惩罚。精确拟合偏置所需的数据通常比拟合权重少得多。每个权重会指定两个变量如何相互作用。我们需要在各种条件下观察这两个变量才能良好地拟合权重。而每个偏置仅控制一个单变量。这意味着,我们不对其进行正则化也不会导致太大的方差。另外,正则化偏置参数可能会导致明显的欠拟合。因此,我们使用向量
通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理
人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快
这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因为它能
这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏和收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因
深度学习是目前人工智能最受关注的领域,但黑盒学习法使得深度学习面临一个重要的问题:AI能给出正确的选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习的起源、应用和待解决的问题;可解释AI的研究方向和进展。
Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一
深度学习挑战 虽然深度学习具有令人印象深刻的能力,但是一些障碍正在阻碍其广泛采用。它们包括以下内容: •技能短缺:当O'Reilly公司的调查询问是什么阻碍人们采用深度学习时,受访者的第一个反应就是缺乏熟练的员工。2018年全球人工智能人才报告表明,“全世界大约有22,000名获
在深度学习领域,特别是在NLP(最令人兴奋的深度学习研究领域)中,该模型的规模正在扩大。最新的gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?通常情况下,gpt-3是非常有说服力的,但它在过去一再表明,“成功的科
深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务、DLS视频教程,可帮助您快速了解DLS。