检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1995)。这些边界为机器学习算法可以有效解决问题提供了理论验证,但是它们很少应用于实际中的深度学习算法。一部分原因是边界太松,另一部分原因是很难确定深度学习算法的容量。确定深度学习模型容量的问题特别困难是由于有效容量受限于优化算法的能力。对于深度学习中的一般非凸优化问题,我们只有很少的理论分析。我们必须记住虽
正则惩罚。精确拟合偏置所需的数据通常比拟合权重少得多。每个权重会指定两个变量如何相互作用。我们需要在各种条件下观察这两个变量才能良好地拟合权重。而每个偏置仅控制一个单变量。这意味着,我们不对其进行正则化也不会导致太大的方差。另外,正则化偏置参数可能会导致明显的欠拟合。因此,我们使用向量
Bezier 曲线的应用十分广泛,比如矢量化的字体绘制就会使用它来连接各个点,相对于使用直线连接的字体,使用 Bezier 曲线连接的字体看起来更加平滑自然。 基于 Bezier 曲线的字体绘制
= {[0, 0]⊤, [0, 1]⊤, [1, 0]⊤, [1, 1]⊤} 上表现正确。我们会用全部这四个点来训练我们的网络,唯一的挑战是拟合训练集。 我们可以把这个问题当作是回归问题,并使用均方误差损失函数。我们选择这个损失函数是为了尽可能简化本例中用到的数学。在应
有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试和竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫
当训练有足够的表示能力甚至会过拟合的大模型时,我们经常观察到,训练误差会随着时间的推移逐渐降低但验证集的误差会再次上升。这些现象的一个例子,这种现象几乎一定会出现。这意味着如果我们返回使验证集误差最低的参数设置,就可以获得更好的模型(因此,有希望获得更好的测试误差)。在每次验证集
话,下面几个图可以很直观的说明深层网络的梯度问题(图片内容来自网上参考文献):注:下图中的隐层标号和第一张全连接图隐层标号刚好相反。图中的曲线表示权值更新的速度,对于下图两个隐层的网络来说,已经可以发现隐藏层2的权值更新速度要比隐藏层1更新的速度慢:图片来自网络那么对于四个隐层的
越了计算能力的增速,机器学习应用每个样本只使用一次的情况变得越来越常见,甚至是不完整地使用训练集。在使用一个非常大的训练集时,过拟合不再是问题,而欠拟合和计算效率变成了主要的顾虑。读者也可以参考 Bottou and Bousquet (2008a) 中关于训练样本数目增长时,泛化误差上计算瓶颈影响的讨论。
不断发展和进步,深度学习逐渐被应用于企业界,并取得了显著的成功和商业价值。从2012年开始,深度学习在企业界的应用开始加速发展。许多大型科技公司开始将深度学习应用于语音识别、图像分类、自然语言处理等领域,并取得了突破性的进展。这些成功的应用案例进一步推动了深度学习在企业界的发展,
首先,以你的解释欠拟合和过度拟合的例子来说,在这个例子中,加入的3个噪声的影响是巨大的,从总数来说,三个噪声占到了所有样本的20%以上,而且在分布上太过于集中,所以对于最终学习到的曲线的影响是特别大,导致过度拟合时整个曲线在后期发生了巨大的变化,与期望曲线相距甚远。而在本次猫狗
实用的角度出发,全方面介绍了如何使用Keras解决深度学习中的各类问题。本书假设读者无任何关于深度学习编程的基础知识,首先介绍了Keras这一高度模块化、极简式的深度学习框架的安装、配置和编译等平台搭建知识,而后详细介绍了深度学习所要求的数据预处理等基本内容,在此基础上介绍了卷积
经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原
结果。 如何解决或者权衡? 综合评估一个模型的好坏,不仅要看模型在不同Top N下的精确率和召回率,最好是要绘制出模型的P-R曲线。 P-R曲线 F1 score 是精确率和召回率的调和平均值 F1 = ( 2 * P * R ) / ( P + R)
数这个重要领域内做更进一步的研究。在许多领域深度学习都表现出巨大的潜力,但深度学习作为机器学习的一个新领域现在仍处于发展阶段,仍然有很多工作需要开展,很多问题需要解决,尽管深度学习的研究还存在许多问题,但是现有的成功和发展表明深度学习是一个值得研究的领域。
深度学习是支撑人工智能发展的核心技术,云服务则是深度学习的主要业务模式之一。OMAI深度学习平台(以下简称OMAI平台)即是在上述前提下诞生的平台软件。OMAI深度学习平台是具备深度学习算法开发、模型训练、推理服务等能力的一站式平台软件。OMAI平台以支持高性能计算技术和大规模分
信网络。与传统的学习方法相比,深度学习方法预设了更多的模型参数,因此模型训练难度更大,根据统计学习的一般规律知道,模型参数越多,需要参与训练的数据量也越大。 20世纪八九十年代由于计算机计算能力有限和相关技术的限制,可用于分析的数据量太小,深度学习在模式分析中并没有表现出优异的识别性能。自从2006年,
什么是深度学习 要理解什么是深度学习,人们首先需要理解它是更广泛的人工智能领域的一部分。简而言之,人工智能涉及教计算机思考人类的思维方式,其中包括各种不同的应用,例如计算机视觉、自然语言处理和机器学习。 机器学习是人工智能的一个子集,它使计算机在没有明确编程的情况下能够更好地完成
智能相关技术取得了很大进步。深度学习定义深度学习定义:一般是指通过训练多层网络结构对未知数据进行分类或回归深度学习分类:有监督学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习的思想:深度神经网络的基本思
收敛到损失函数的极小值,这一过程如图2.3所示。假设损失函数J定义在平面上,并且函数图像类似于一个碗形容器。椭圆形的曲线代表等高线,即函数J为常数的集合构成的曲线,越往中间值越小。任意选择一个初始点w0,箭头指向该点梯度的反方向(梯度方向与该点为等高线垂直),逐步沿着梯度下降方向
是自动化深度学习,众所周知,近年来深度学习的研究开展得如火如荼,为了拓展读者的知识领域和研究思路,我们在这一部分花费了大量的篇幅来介绍近几年最前沿的算法和技术,这也是全书最核心的章节。第四部分(第14章)是关于元学习的内容,我们认为元学习应该是独立于统计机器学习和深度学习的一个研