检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
大多数机器学习算法都有设置超参数,可以用来控制算法行为。超参数的值不是通过学习算法本身学习出来的(尽管我们可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数)。所示的多项式回归实例中,有一个超参数:多项式的次数,作为容量超参数。控制权重衰减程度的 λ 是另一个
深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为
字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。 如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大
复杂的神经网络模型。这个模型通常会拟合,然后应用一些方法控制复杂神经网络模型过拟合现象。这些方法称为正则化方法。regularization。以上面的典型的过拟合的情况为例,一个很自然的想法就是早点停止训练神经网络,就可以防止神经网络模型过拟合。这种策略称为早停法。early stopping
Curve)值,用以量化ROC曲线下的面积,进而给出一个关于模型性能的单一指标。 二、ROC曲线的历史背景 了解ROC曲线的历史背景不仅能增加我们对这一工具的尊重,还能更好地理解它在多个领域内的应用价值。因此,本节将探讨ROC曲线从最早的军事应用到现代医学和机器学习领域的发展过程。 二战雷达信号检测
地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习在深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及
本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。
法来处理过拟合困难。 那么有没有合适的理论框架能够处理增加/减少参数以抑制欠拟合/过拟合的机制呢? 这首先得回到深度学习的本质上来。学习的本质是在输入数据到输出数据之间建立映射关系。数学上即定义了输入到输出的函数关系。那么,这样的函数关系是如何建立的呢?实际上,深度学习的核心算法
字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。 如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大
例如,数字 “8’’ 形状的流形在大多数位置只有一维,但在中心的相交处有两维。如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大
通过本文对多种深度学习优化技巧的介绍,从经典的正则化到最新的自监督学习与AutoML技术,展示了从过拟合到泛化的转变路径。优化深度学习模型不仅仅是调整超参数,还涉及到从数据处理到模型设计的多个方面。随着研究的不断深入,未来我们能够更加高效和精确地训练出具备良好泛化能力的深度学习模型。
),这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征。优点:可以有效实现防止过拟合缺点:训练更加复杂其他正则化方法:通过限制权重的大小,使得模型不能拟合任意的噪声数据,从而达到防止过拟合的目的。因为更小的权重意味着网络的行为不会因为我们随便改变了一个输入而改变太大。L2 Normalization:L1
一、德卡斯特里奥算法二、贝塞尔曲线递推公式 贝塞尔曲线参考 : https://github.com/venshine/BezierMaker 一、德卡斯特里奥算法 贝塞尔曲线的 三阶 / 四阶 / 五阶 曲线的绘制 , 都是依赖于其低阶贝塞尔曲线实现的 ,
“精度=1-错误率" .更一般地,我们把 学习器的实际预测输出与样本的真实输出之间的差异称为 “误差” (error),学习器在训练集上的误差称为 “ 训练误差” (training error)或 “ 经验误差,然我们希望得到泛化误差小的学习器然而,我们事先并不知道新 样本是什么样
#include "stdio.h"#include "math.h"#include "graphics.h" double lgam1(x) /*Gamma函数的计算*/double x;{ int i; double y,t
本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng
学习深度学习是否要先学习完机器学习,对于学习顺序不太了解
假设对观测数据进行拟合,得到的拟合曲线为。将观测数据代入,得到,其和的偏差定义为
拟合或许是一个二 次曲线(抛物线)。对于一个本身分布近似抛物线的训练集来说,线性拟合明显是“欠拟合”的,而三次曲线则是“过拟合”的,效果都不如抛物线要来的好。所以 说,即便是监督式学习的回归问题,也存在一个拟合度的把握,而这非常依赖于研究人员自身的经验。这类函数模型确定后运用最小二乘法拟合的方法称作参数学
Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。