检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
@modelarts:size Array of objects 内置属性:图像尺寸(图像的宽度、高度、深度),类型为List<Integer>。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100,200,3]和[100,200]均合法。 说
py configs/opensora/train/64x512x512.py 正常训练过程如下图所示。训练完成后,关注loss值,loss曲线收敛,记录总耗时和单步耗时。训练过程中,训练日志会在最后的Rank节点打印。可以使用可视化工具TrainingLogParser查看loss收敛情况。
@modelarts:size Array of objects 内置属性:图像尺寸(图像的宽度、高度、深度),类型为List<Integer>。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100,200,3]和[100,200]均合法。 说
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List[/topic/body/section/table/tgroup/tbody/row/entry/p/br {""}) (br]。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
从第三方元模型导入,则为空,默认值为空。 source_type 否 String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。 model_type 是 String 模型类型
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
context-parallel-size 。 (此参数目前仅适用于Llama3系列模型长序列训练) LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
与视频同名,为视频的标签。视频与标签应该一一对应。通常情况下,不使用一个视频对应多个标签。 如果为风格微调,请准备至少50条风格相似的视频和标签,以利于拟合。 修改CogVideo/sat/configs/cogvideox_*.yaml文件 如果希望使用 Lora 微调,需要修改cogvideox_<模型参数>_lora
AOE自动调优更多介绍可参考Ascend转换工具功能说明。 自动高性能算子生成工具 自动高性能算子生成工具AKG(Auto Kernel Generator),可以对深度神经网络模型中的算子进行优化,并提供特定模式下的算子自动融合功能,可提升在昇腾硬件后端上运行模型的性能。 AKG的配置也是在模型转换阶段进
SMN开关。 subscription_id 否 String SMN消息订阅ID。 exeml_template_id 否 String 自动学习模板ID。 last_modified_at 否 String 最近一次修改的时间。 package 否 WorkflowServicePackege
Boolean SMN开关。 subscription_id String SMN消息订阅ID。 exeml_template_id String 自动学习模板ID。 last_modified_at String 最近一次修改的时间。 package WorkflowServicePackege
务的输入参数,即上文提到的输入请求类型。 图1 查看服务的调用指南 调用指南中的输入参数取决于您选择的模型来源: 如果您的元模型来源于自动学习或预置算法,其输入输出参数由ModelArts官方定义,请直接参考“调用指南”中的说明,并在预测页签中输入对应的JSON文本或文件进行服务测试。
模型精度信息,从配置文件读取,可不填。非模板参数 source_type 否 String 模型来源的类型,当前仅可取值“auto”,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业和其他方式部署的模型不设置此值。默认值为空。非模板参数 dependencies 否