检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
接口的响应体需要按照jsonpath语法要求进行填写,jsonpath语法的作用是从响应体的json字段中提取出所需的数据。 评测配置 评测类型 选择“自动评测”。 评测规则 选择“基于规则”。 评测数据集 评测模板:使用预置的专业数据集进行评测。
data Array of ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 参数类型 描述 bucket String 输入数据的OBS桶名称。 path String 初始场数据的存放路径。
如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
数据资产:数据资产是指用户在平台上发布的所有数据集。这些数据集会被存储在数据资产中,用户可以随时查看数据集的详细信息,如数据格式、大小、配比比例等,同时平台会自动记录每个数据集的操作历史,例如创建、发布及上线等过程。
Pangu-Predict-Table-Anom-2.0.0 2024年12月发布的版本,支持识别数据集中不符合预期模式或行为的数据点。
数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、数据合成、数据标注、数据评估、数据配比、数据流通和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。
data Array of ObsStorageDto objects 输入数据的OBS信息。 表4 ObsStorageDto 参数 参数类型 描述 bucket String 输入数据的OBS桶名称。 path String 初始场数据的存放路径。
用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。 模型评测:为了确保模型的实际应用效果,平台提供了多维度的模型评测功能。
与非专业大模型相比,专业大模型针对特定场景优化,更适合执行数据分析、报告生成和业务洞察等任务。 ModelArts Studio大模型开发平台为用户提供了多种规格的专业大模型,以满足不同场景和需求。以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。
用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。 CTS的详细介绍和开通配置方法,请参见CTS快速入门。 父主题: 安全
此插件为应用提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。
通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。
Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 Token计算器 用户在部署服务的过程中,建议开启“安全护栏”功能,以保证内容的安全性。 父主题: 使用前必读
图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。 父主题: 批量评估提示词效果
类似场景需要的微调数据量视具体情况而定,从经验上来说,若实际场景相对简单和通用,使用几千条数据即可;若场景复杂或专业,则需要上万条数据。 数据质量要求: 保证数据的分布和目标需要与实际场景匹配。
2024年12月发布的版本,支持识别数据集中不符合预期模式或行为的数据点。 Pangu-Predict-Table-TimSeries-2.0.0 该模型属于时间序列预测模型,用于基于时间序列数据预测未来值。
数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 父主题: 大模型微调训练类问题
适用于内容生成、批量翻译、数据分析等场景。 其中,任务型工作流不支持配置消息节点和提问器节点。 工作流编排流程见表1。 表1 工作流编排流程 操作步骤 说明 步骤1:创建工作流 创建一个新的工作流。 步骤2:配置开始节点 设定工作流的起始点。
也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。 父主题: 撰写提示词
微调阶段:微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。