检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型训练存储加速 针对AI训练场景中大模型Checkpoint保存和加载带来的I/O挑战,华为云提供了基于对象存储服务OBS+高性能弹性文件服务SFS Turbo的AI云存储解决方案,如下图所示。 SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo H
例如,标注对象“COMMENTS_114745.txt”的内容如下所示。 手感很好,反应速度很快,不知道以后怎样 三个月前买了一个用的非常好果断把旧手机替换下来尤其在待机方面 没充一会电源怎么也会发热呢音量健不好用回弹不好 算是给自己的父亲节礼物吧物流很快下单不到24小时就到
使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil) 可以用一个run脚本把整个流程包起来。run.sh脚本的内容可以参考如下示例: #!/bin/bash ##认证用的AK和SK硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。
使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil) 可以用一个run脚本把整个流程包起来。run.sh脚本的内容可以参考如下示例: #!/bin/bash ##认证用的AK和SK硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。
在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。
Lite Server使用流程 ModelArts Lite Server提供多样化的xPU裸金属服务器,赋予用户以root账号自主安装和部署AI框架、应用程序等第三方软件的能力,为用户打造专属的云上物理服务器环境。用户只需轻松选择服务器的规格、镜像、网络配置及密钥等基本信息,即
Lite Cluster&Server介绍 ModelArts Lite基于软硬件深度结合、垂直优化,构建开放兼容、极致性价比、长稳可靠、超大规模的云原生AI算力集群,提供一站式开通、网络互联、高性能存储、集群管理等能力,满足AI高性能计算等场景需求。目前其已在大模型训练推理、自
分日志,并在日志窗口上方提供全量日志访问链接。打开该链接可在新页面查看全部日志。 图5 查看全量日志 如果全部日志超过500M,可能会引起浏览页面卡顿,建议您直接下载日志查看。 预览链接在生成后的一小时内,支持任何人打开并查看。您可以分享链接至他人。 请注意日志中不能包含隐私内容,否则会造成信息泄露。
本文基于方式二的环境进行操作,请参考方式二中的环境开通和配置指导完成裸机和容器开发初始化配置。注意业务基础镜像选择Ascend+PyTorch镜像。 配置好的容器环境如下图所示: 图1 环境配置完成 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
Notebook实例详情页面 准备好密钥对文件。 密钥对在用户第一次创建时,自动下载,之后使用相同的密钥时不会再有下载界面(用户一定要保存好),或者每次都使用新的密钥对。 Step1 安装SSH工具 下载并安装SSH远程连接工具,以PuTTY为例,下载链接。 Step2 使用puttygen将密钥对
Server运行的,需要购买并开通Server资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 微调训练 指令监督微调训练 介绍如何进行SFT全参微调/lora微调、训练任务、性能查看。
例如,标注对象“COMMENTS_20180919_114745.txt”的内容如下所示。 手感很好,反应速度很快,不知道以后怎样 三个月前买了一个用的非常好果断把旧手机替换下来尤其在待机方面性能好 没充一会电源怎么也会发热呢音量健不好用回弹不好 算是给自己的父亲节礼物吧物流很快下单不到24小时就到货了耳机更赞有些低音炮的感觉入耳很紧不会掉棒棒哒
数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.AlgorithmParameters(name="use_fp16", value=wf
限管理列表,可查看到此账号的委托配置信息。 图2 查看委托配置信息 Step1 准备训练数据 本案例使用的数据是MNIST数据集,您可以在浏览器中搜索“MNIST数据集”下载如图3所示的4个文件。 图3 MNIST数据集 “train-images-idx3-ubyte.gz”:
数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.AlgorithmParameters(name="use_fp16", value=wf
896599&Signature=BedFZHEU1oCmqlI912UL9mXlhkg%3D" } 返回字段表示日志的obs路径。复制至浏览器即可看到对应效果。 调用查询训练作业指定任务的运行指标接口查看训练作业的运行指标详情。 请求消息体: URI格式:GET https:/
Server运行的,需要购买并开通Server资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强
图1 Notebook实例详情页面 准备好密钥对。 密钥对在用户第一次创建时,自动下载,之后使用相同的密钥时不会再有下载界面(用户一定要保存好),或者每次都使用新的密钥对。 Step1 配置SSH 在本地的PyCharm开发环境中,单击File -> Settings -> Tools
数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.AlgorithmParameters(name="use_fp16", value=wf
import tensorflow as tf from six.moves import urllib # 训练数据来源于yann lecun官方网站http://yann.lecun.com/exdb/mnist/ SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'