检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
vscode-server-linux-x64.tar.gz -C /home/ma-user/.vscode-server/bin/$commitId --strip=1 chmod 750 -R /home/ma-user/.vscode-server/bin/$commitId 关闭VS Code,
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
I引擎”。 “容器调用接口” 当“AI引擎”选择“Custom”时,才会显示该参数。 模型提供的推理接口所使用的协议和端口号,缺省值是HTTPS和8080,端口和协议需要根据模型实际定义的推理接口进行配置。 “健康检查” 用于指定模型的健康检查。使用Custom引擎时,会显示该参
错,报错如图所示。 解决:在训练开始前,针对llama2模型中的tokenizer,需要修在generation_config.json中加入"do_sample": true,具体如图所示。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的b
错,报错如图所示。 解决:在训练开始前,针对llama2模型中的tokenizer,需要修在generation_config.json中加入"do_sample": true,具体如图所示。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的b
错,报错如图所示。 解决:在训练开始前,针对llama2模型中的tokenizer,需要修在generation_config.json中加入"do_sample": true,具体如图所示。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的b
面。 图1所示图标,为JupyterLab的Git插件。 图1 Git插件 克隆GitHub的开源代码仓库 GitHub开源仓库地址:https://github.com/jupyterlab/extension-examplesitHub,单击,输入仓库地址,单击确定后即开始克
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
vscode-server-linux-x64.tar.gz -C /home/ma-user/.vscode-server/bin/$commitId --strip=1 chmod 750 -R /home/ma-user/.vscode-server/bin/$commitId 关闭VS Code,
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
配置。 目前仅支持SFT指令监督微调训练阶段。 代码目录 benchmark工具脚本存放在代码包AscendCloud-LLM-xxx.zip的LLM/LLaMAFactory/benchmark目录下,包含训练性能测试和训练精度测试脚本。 代码目录如下: benchmark ├──
8k:8192-lora、full-8k:8192-full】 --master_addr <master_addr>:主master节点IP,一般选rank0为主master。 --num_nodes <nodes>:训练节点总个数 --rank <rank>:节点ID 训练完
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
thQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut