检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
create_time Long 数据处理任务的创建时间。 deleted_sample_count Integer 处理后删除的图片数量。 description String 数据处理任务的版本描述。 duration_seconds Integer 数据处理任务的运行时间,单位秒。 inputs
5.1 日志提示“reason:Forbidden”。 OBS限流。 参考5.1.1 OBS复制过程中提示“BrokenPipeError: Broken pipe”。 OBS其他问题。 请参考OBS服务端错误码或者采集request id后向OBS客服进行咨询。 如果是空间不足。
/home/ma-user/modelarts/user-job-dir/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd
19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。
HttpEntity entity = MultipartEntityBuilder.create().addBinaryBody("images", file).setContentType(ContentType.MULTIPART_FORM_DATA).setCharset(Consts
6334 Invalid value for name or description. The character `{}` is not allowed. description参数错误 请检查description参数是否合法。 400 ModelArts.6335 '{}' is
eddings': 8192, 'rope_type': 'llama3'} 解决方法:升级transformers版本到4.43.1:pip install transformers --upgrade 问题5:使用SmoothQuant进行W8A8进行模型量化时,报错:AttributeError:
sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建doc
905-20240529154412.zip AIGC场景训练和推理代码包 AscendCloud-LLMFramework-6.3.905-20240611151643.zip 大模型推理框架代码包 AscendCloud-OPP-6.3.905-20240611170314.zip 算子依赖包 支持的特性
LLaVA Qwen-VL Wav2Lip OpenSora1.2 OpenSoraPlan1.0 支持如下框架或模型基于DevServer的PyTorch NPU的训练: diffusers koyha_ss LLaVA Wav2Lip OpenSora1.2 OpenSoraPlan1
import argparse import torch import torch.multiprocessing as mp parser = argparse.ArgumentParser(description='ddp demo args') parser.add_argument('--world_size'
基于AIGC模型的GPU推理业务迁移至昇腾指导 场景介绍 迁移环境准备 pipeline应用准备 应用迁移 迁移效果校验 模型精度调优 性能调优 常见问题 父主题: GPU业务迁移至昇腾训练推理
装在任一台可以访问公网的机器。 首先需要绑定公网地址,单击公网地址后的“绑定”按钮。 图4 绑定公网地址 选择已有的公网IP,或者跳至创建,创建新的弹性公网IP。 完成公网地址绑定后,在“集群信息”找到“连接信息”,单击kubectl后的“配置”按钮。 按照界面提示步骤操作即可。
sh时,命令如下: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节点机器中使用基础镜像创建doc
/home/ma-user/work/llm_train/AscendFactory; sh ./scripts_modellink/install.sh; sh ./scripts_modellink/llama2/0_pl_pretrain_13b.sh 创建训练作业后,会在节
精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness
精度评测可以在原先conda环境,进入到一个固定目录下,执行如下命令。 rm -rf lm-evaluation-harness/ git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness
本章节介绍如何使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── ascend_aut
Decoding时,在发送的请求中包含上述guided_json架构,具体示例可参考以下代码。 curl -X POST http://${docker_ip}:8080/v1/completions \ -H "Content-Type: application/json" \ -d '{
训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install.sh; sh ./scripts/llama2/0_pl_lora_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出