检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最近在看这本书,记一下笔记。感知机模型(perceptron model)的计算执行方向如下。感觉和线性回归很像呀。 但据说感知机模型不能用于线性回归问题,因为它只关注分类问题,而线性回归问题涉及到回归问题?对于线性不可分的情况,在感知机基础上一般有两个解决方向。 线性不可分是指
这个超参数在验证集上具有 U 型性能曲线。很多控制模型容量的超参数在验证集上都是这样的 U 型性能曲线。在提前终止的情况下,我们通过拟合训练集的步数来控制模型的有效容量。大多数超参数的选择必须使用高代价的猜测和检查过程,我们需要在训练开始时猜测一个超参数,然后运行几个步骤检查它的训练效果。‘‘训练时间’’
Multinoulli 分布 (multinoulli distribution) 或者分类分布 (categorical distri-bution) 是指在具有 k 个不同状态的单个离散型随机变量上的分布,k 是有限的。2 Multinoulli 分布的参数是向量
也存在许多其他种类的隐藏单元,但它们并不常用。一般来说,很多种类的可微函数都表现得很好。许多未发布的激活函数与流行的激活函数表现得一样好。为了提供一个具体的例子,作者在 MNIST 数据集上使用 h = cos(Wx + b) 测试了一个前馈网络,并获得了小于 1% 的误差率,这
我们可以使用最大似然估计找到对于有参分布族 p(y | x; θ) 最好的参数向量 θ。我们已经看到,线性回归对应于分布族p(y | x; θ) = N (y; θ⊤x, I).通过定义一族不同的概率分布,我们可以将线性回归扩展到分类情况中。如果我们有两个类,类 0 和类 1,那么我们只需要指定这两类之一的概率。类
深度学习服务是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练。
第一讲到这里就结束了,第二讲看了一点,其中关于人工智能机器学习概念,除了公式的定义之外,用类比的方法讲的非常的简单易懂 有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。 那么无监督学习的典型应用模式是什么呢?说出来
旨在为机器学习算法提供一个常见的基准测试。 MNIST数据集包含手写数字的图像,它是一个非常流行的数据集,被广泛用于图像识别和深度学习的模型评估。该数据集共有60,000个训练图像和10,000个测试图像,每个图像都是28x28像素的灰度图像。这个数据集已经成为深度学习领域中的一
而深度学习是机器学习的一种特殊形式,它通过构建多层神经网络来进行学习和预测。深度学习的优点在于能够自动学习特征表示,不需要手动进行特征工程。它能够从原始数据中学习到更加抽象和高级的特征,从而取得更好的预测效果。 相比机器学习,深度学习的优点包括: 1. 自动特征学习:深度学习能够自动学习从原始数据中提取特征,减少了对特征工程的依赖。
学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习,
实的后盾!谨以此书献给众多热爱深度学习算法及MXNet的朋友们! 魏凯峰 CONTENTS目 录前言第1章 全面认识MXNet11.1 人工智能、机器学习与深度学习21.1.1 人工智能21.1.2 机器学习21.1.3 深度学习41.2 深度学习框架41.2.1 MXNet61
要重点探讨的深度学习是具有多级表示的表征学习方法。在每一级(从原始数据开始),深度学习通过简单的函数将该级的表示变换为更高级的表示。因此,深度学习模型也可以看作是由许多简单函数复合而成的函数。当这些复合的函数足够多时,深度学习模型就可以表达非常复杂的变换。 深度学习可以逐级表示越
深度学习系统,学习的是输入和输出之间复杂的相关性,但是学习不到其间的因果关系。虽然有人工神经网络通过构建和加强联系,深度学习从数学上近似了人类神经元和突触的学习方式。训练数据被馈送到神经网络,神经网络会逐渐进行调整,直到以正确的方式做出响应为止。只要能够看到很多训练图像并具有足够
的输出结果只能为1或-1,可用于简单二元分类。DNN基本结构在介绍深度学习的过程中其实小Mi已经跟大家介绍过深度学习网络的大致模型,分别由输入层、隐藏层和输出层,而DNN简单来说就是拥有很多隐藏层的神经网络。 深度神经网络中层与层是全连接的关系,即,第i层的任意神经元一定与第i+
深度学习基础总结,无一句废话(附完整思维导图)深度学习如何入门? - 知乎 深度学习入门基础讲义_shuzfan的博客-CSDN博客_深度学习入门 神经网络15分钟入门!足够通俗易懂了吧 - 知乎 深度学习基础知识点梳理 - 知乎
1. 深度学习引言 近年来,深度学习 (Deep Learning, DL) 在多个领域中都取得了突破性进展,尤其是在图像识别、目标检测以及自然语言处理等领域。深度学习的相关内容并非一篇或几篇博客能够详尽的介绍完整,本文的目的也并非介绍所有深度学习概念与模型。本文的主要
©为UGNet生成的分割效果,其中白色为前景部分,即海拉细胞,黑色为背景部分; (d)是对损失函数改进后使UGNet能够更好地学习细胞间的边界像素。 基于深度学习的图像分割在医疗领域中的应用越来越广泛,U-Net似乎就是其中的体现之一,U-Net在大量医学影像分割上的效果使得这种语义
业界,学术界和各大顶会的研究人员更多地是使用PyTorch。但TensorFlow、Keras和PyTorch这3种深度学习计算框架我们都要学习,一个好的深度学习项目不能因为使用了不同的框架而使我们错过它们。
试自己的强化学习程序。在本课程中,您将通过使用 Tensorflow 和 PyTorch 来训练能玩太空入侵者、Minecraft、星际争霸、刺猬索尼克等游戏的聪明的智能体。在第一章中,您将学习到深度强化学习的基础知识。在训练深度强化学习智能体之前,掌握这些深度学习的基础知识非常重要。让我们开始吧!一